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ABSTRACT
Huber’s criterion can be used for robust joint estimation of re-
gression and scale parameters in the linear model. Huber’s [1]
motivation for introducing the criterion stemmed from non-
convexity of the joint maximum likelihood objective function
as well as non-robustness (unbounded influence function) of
the associated ML-estimate of scale. In this paper, we illus-
trate how the original algorithm proposed by Huber can be
set within the block-wise minimization majorization frame-
work. In addition, we propose novel data-adaptive step sizes
for both the location and scale, which are further improving
the convergence. We then illustrate how Huber’s criterion can
be used for sparse learning of underdetermined linear model
using the iterative hard thresholding approach. We illustrate
the usefulness of the algorithms in an image denoising appli-
cation and simulation studies.

Index Terms— Huber’s criterion, robust regression,
sparse learning, minimization-majorization algorithm.

1. INTRODUCTION

Consider having N measurements or outputs (responses) yi 2
R and each output is associated with a p-dimensional vector
of inputs (predictors) x>

i = (xi1, . . . , xip) 2 Rp. We assume
a linear regression model, where input-output relationship is
described by

yi = x
>
i � + ei, i = 1, . . . , N, (1)

where the random error terms ei, i = 1, . . . , N , are i.i.d. and
account for both the modelling and measurement errors. The
distribution of the errors is assumed to be symmetric with
probability density function (p.d.f.) f(e) = (1/�)f0(e/�),
where � denotes the scale parameter of the distribution and
f0(e) denote the standardized (unit scale) distribution. The
goal is to estimate the vector � = (�1, . . . ,�p)> 2 Rp of re-
gression coefficients and the scale parameter � given the data
{(yi, xi); i = 1, . . . , N}. In many applications, the scale is a
nuisance parameter, and the primary interest is on estimation
of �.

This work was supported by the Academy of Finland under Grant
298118.

The linear model can be conveniently expressed using
matrix-vector notations. We use the convention that matri-
ces are represented by bold uppercase letters while vectors
will not be bold, except when they have N components. We
may then express the set of N input p-vectors compactly via
the N ⇥ p design matrix, X =

�
x1 x2 . . . xN

�>
=�

x1 x2 · · · xp

�
. The convention distinguishes a p-

vector of inputs xi for the ith observation from the N -vectors
xi consisting of all the observations on i

th variable. We col-
lect the outputs into a vector y = (y1, . . . , yN )> and error
terms into vector e. Thus the linear model (1) now rewrites
as y = X� + e.

We return to the problem of joint robust estimation of
regression and scale parameters in the linear model using
Huber’s criterion [1]. In this paper, we elaborate on re-
cent derivations in [2] showing how the original algorithm
proposed by Huber can be derived as a block-wise mini-
mization majorization algorithm [3]. In addition, we propose
new novel data-adaptive step sizes for both the location and
scale parameter updates, which are illustrated to improv-
ing the convergence. We then describe the use of Huber’s
criterion in sparse signal recovery (SSR) [4, 5] problem us-
ing normalized iterative hard thresholding (NIHT) approach
[6, 7]. Robust performance of Huber’s sparse and non-sparse
estimates of regression and scale are illustrated with a sim-
ulation study and in robust image denoising application. Fi-
nally, Matlab and Python toolboxes are available in https:
//github.com/AmmarMian/huber_mm_framework. We
hope that the present paper and the toolboxes are able to bring
more attention to Huber’s criterion which is scalable robust
approach for many practical large-scale problems.

Finally, we note that sparse/non-sparse linear estimation
in the linear regression model using Huber’s criterion has
been considered in [8, 9, 2]. The derived MM framework
for Huber’s criterion can potentially lead to new research
directions using theory developed in [10, 3].

2. MAXIMUM LIKELIHOOD APPROACH

In his seminal work, Huber [11] derived a family of univariate
heavy-tailed distributions, which he called the “least favor-
able distributions” (LFDs). The LFD corresponds to a sym-
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metric unimodal distribution which follows a Gaussian dis-
tribution in the middle, and a double exponential distribution
in the tails. The standardized (unit scale) p.d.f. of LFD is
f0(x) = e

�⇢c(x), where ⇢c(x) is the Huber’s loss function,

⇢c(x) =
1

2
⇥
(
|x|2, for |x|  c

2c|x|� c
2
, for |x| > c,

, x 2 R, (2)

where c is a user-defined threshold that influences the degree
of robustness. Huber’s loss (2) is a hybrid of the (Least-
squares) LS- and the least absolute deviation (LAD) loss func-
tions using the LS-loss function for relatively small errors and
LAD loss function for relatively large errors. Furthermore,
in the limit c ! 1, the loss function reduces to LS-loss
⇢c(x) = 1

2x
2. Huber’s loss function is convex and differ-

entiable, and the derivative of the loss function,

 c(x) =

(
x, for |x|  c

c sign(x), for |x| > c
,

will be referred to as the score function in the sequel. Note
that  c(·) is a winsorizing function.

The threshold c is usually chosen so that the minimizer
in the regression-only problem (� being fixed) attains a user-
defined asymptotic relative efficiency (ARE) w.r.t. the LS es-
timate (LSE) under Gaussian errors. In order to obtain 95%
(or 85%) ARE for the Gaussian noise case, the threshold are
chosen according to c.95 = 1.345 and c.85 = 0.7317.

Assume now that the error terms ei in the linear model (1)
follow the LFD, so with the standardized distribution given
previously. Then consider finding the ML estimates (MLE-
s) of the unknown parameters � and � via minimizing the
negative log-likelihood function of the data:

LML(�,�) = N ln� +
NX

i=1

⇢c

✓
yi � x

>
i �

�

◆
. (3)

The problem is that the negative log-likelihood function is not
convex in (�,�). This is easy to see by simply noting that
LML(�,�) is not convex in � for a fixed �. Another prob-
lem is that the associated scale estimate will not be robust,
e.g., possessing a bounded influence function. The problem of
non-robustness of the associated MLE and the non-convexity
of the ML criterion (3), lead Huber to consider an alternative
criterion function that avoids such problems. This approach
is discussed in detail in the following sections.

3. HUBER’S CRITERION

In order to avoid the problems associated with (3) described
earlier, Huber [1] proposed an alternative criterion function

L(�,�) = N(↵�) +
NX

i=1

⇢c

✓
yi � x

>
i �

�

◆
� (4)

where ↵ > 0 is a fixed scaling factor. We refer to (4) as
Huber’s criterion and the minimizer (�̂, �̂) of L(�,�) as Hu-
ber’s joint estimates of regression and scale. Unlike (3), Hu-
ber’s criterion function (4) is jointly convex in (�,�). In ad-
dition to this, the minimizer �̂ preserves the same theoretical
robustness properties (such as bounded influence function) as
the estimator in the regression-only problem where the scale
parameter is known.

An important concept when optimizing the Huber’s crite-
rion is the pseudo-residual which is in essence a winsorized
version of the conventional residual r = y�X�. The pseudo-
residual is associated with the score function, and defined as

r ⌘ r (�,�) =  c

✓
y �X�

�

◆
�, (5)

where  c(r/�) = ( c(r1/�), . . . , c(rN/�))>. In the case
of LS-loss (the case c ! 1),  c(x) = x, and r coincides
with the conventional residual vector, so r = r. Scaling by
� in (5) maps the residuals back to the original scale of the
data.

Since the optimization problem (4) is convex, the global
minimizer (�̂, �̂) is a stationary point of (4). Thus, (�̂, �̂) can
be found by solving the M -estimating equations, obtained by
setting the gradient of L(�,�) to zero

r�L(�̂, �̂) = 0 , x
>
j r̂ = 0, j = 1, . . . , p

r�L(�̂, �̂) = 0 , 1

N

NX

i=1

�c

 
yi � x

>
i �̂

�̂

!
= ↵

, (6)

where r̂ = r (�̂, �̂) and �c : R! R+
0 is defined as

�c(x) =  c(x)x� ⇢c(x) =
1

2
 c(x)

2
. (7)

It is instructive to consider the estimating equations (6)
in the case of LS loss ⇢c(x) = 1

2x
2. In this case, the score

function is  c(x) = x and r̂ = r̂, and the first equation
in (6) becomes the conventional normal equations x

>
j r̂ =

0, for j = 1, . . . , p , X
>(y �X�̂) = 0. Hence, the mini-

mizer �̂ of Huber’s criterion is simply the LS-estimate of re-
gression �̂ = (X>

X)�1
X

>
y . Furthermore, the �c function

in (7) is simply �(x) = 1
2x

2 and the 2nd estimating equation
in (6) reduces to �̂2 = 1

N(2↵)

PN
i=1( yi� x

>
i �̂)

2
. Thus, If we

choose ↵ = 1
2 , then the solution �̂ coincides with the classi-

cal MLE of scale for Gaussian errors, the standard deviation
of the residuals. Interestingly, the two quite different crite-
rion functions, the Huber’s criterion (4) and the ML criterion
function (3), share the same unique global (joint) minimum
when when the LS-loss function is used. Therefore, Huber’s
criterion can be seen as a method to convexify the Gaussian
ML criterion function.

The scaling factor ↵ in (4) is used to ensure that �̂ is
Fisher-consistent for the unknown scale � when {ei}Ni=1

i.i.d.⇠



N (0,�2). Due to (6), this is achieved if

↵ = E[�c(e)] =
c
2

2
(1� F�2

1
(c2)) +

1

2
F�2

3
(c2), (8)

where F�2
k

denotes the c.d.f. of chi-squared distribution with
k degrees of freedom and e ⇠ N (0, 1), Hence, when using
the LS loss, �c(e) =

1
2e

2, and Fisher consistency is obtained
if ↵ = 1

2E[e
2] = 1

2

4. MINIMIZATION-MAJORIZATION ALGORITHM

A block-wise algorithm Minimization-Majorization algo-
rithm works similarly to MM algorithms [3, 12, 13]. Let ✓
be partitioned into ✓ = (✓1, ✓2), where ✓1 2 ⇥1, ✓2 2 ⇥2

and ⇥ = ⇥1 ⇥⇥2 and we wish to find a minimizer of a real-
valued function L(✓) = L(✓1, ✓2). At (n+ 1)th iteration, the
blocks are updated in a cyclic manner as follows:

✓
(n+1)
2 = T2

�
✓
(n)
1 , ✓

(n)
2

�
, (9)

T2

�
✓
(n)
1 , ✓

(n)
2

�
= argmin

✓22⇥2

g2

�
✓2|✓(n)1 , ✓

(n)
2

�

✓
(n+1)
1 = T1(✓

(n)
1 , ✓

(n+1)
2 ), (10)

T1

�
✓
(n)
1 , ✓

(n+1)
2

�
= argmin

✓12⇥1

g1

�
✓1|✓(n)1 , ✓

(n+1)
2

�

where the majorization surrogate functions gi(✓i|✓01, ✓02) =
gi(✓i|✓0), i 2 {1, 2} satisfy

gi(✓
0
i|✓01, ✓02) = L(✓01, ✓

0
2) 8(✓01, ✓02) 2 ⇥, (11)

g1(✓1|✓01, ✓02) � L(✓1, ✓
0
2) 8✓1 2 ⇥1, 8(✓01, ✓02) 2 ⇥, (12)

g2(✓2|✓01, ✓02) � L(✓01, ✓2) 8✓2 2 ⇥2, 8(✓01, ✓02) 2 ⇥. (13)

Furthermore, when L and gi are differentiable functions, it is
possible to impose the constraint

r✓igi(✓i | ✓01, ✓02)
��
✓i=✓0i

= r✓iL(✓)
��
✓=✓0

, i 2 {1, 2}. (14)

Under some regularity conditions, the sequence obtained by
iterating the steps above is a stationary point of L(✓) if it lies
in the interior of ⇥.

The challenging part in designing a block-wise MM algo-
rithm is, naturally, in finding appropriate surrogate functions
gi(·|✓0), i 2 {1, 2}. A common choice is a quadratic function
of the form b0 + b1✓ + b2✓

2 as it results in a simple update
formula in (10), (9).

We now construct an MM algorithm for obtaining the sta-
tionary solution (�̂, �̂) in (6) of Huber’s criterion L(�,�) =P

i ⇢c(ri/�)� +N(↵�). For this purpose, we will let �0 and
�
0 denote values of previous iterates, and write r0 = y�X�

0

and r
0
 =  

�
r
0
/�

0�
�
0 for the corresponding residual and

pseudo-residual.
For the scale term, we will use the following majorization

surrogate function:

g2(�|�0
,�

0) = a
0 + b

0 1

�
+N↵�. (15)

In (15) , a0 + b
0
�
�1 is used to majorize

P
i ⇢c(ri/�)�, where

a
0 and b

0 are constants that depend on the previous iterates
�
0 and �0. These terms can be found by solving the pair of

equations (11) and (14) which yields (after simplifying) the
following surrogate function

g2(�|�0
,�

0) = L(�0
,�

0)

+N↵(� � �0) +
NX

i=1

�c

✓
r
0
i

�0

◆✓
(�0)2

�
� �0

◆
. (16)

Next we turn into constructing a majorization surrogate func-
tion g1(�|�0

,�
0). For this purpose, consider a surrogate func-

tion for ⇢c(ri/�0) by using

⇢M

⇣
ri

�0

⌘
= a

0
i + b

0
i
ri

�0 +
1

2

r
2
i

(�0)2
,

where the constants a0i and b
0
i depend on the previous iterates

�
0 and �0 and are found by solving the pair of equations (11)

and (14) w.r.t. a
0
i and b

0
i. After finding these solutions, we

obtain a surrogate function of the form

g1(�|�0
,�

0) = N(↵�0) +
NX

i=1

✓
a
0
i + b

0
i
ri

�0 +
1

2

r
2
i

(�0)2

◆
�
0

= const +
NX

i=1

✓⇥
r
0
 ,i � r

0
i

⇤
ri +

1

2
r
2
i

◆
1

�0

where the constant term does not depend on �.

4.1. MM Algorithm for Huber’s Criterion

Next we prove that g1 and g2 are valid surrogate functions, so
verify (14). First note that the difference function is

h2(�) = g2(�|�0
,�

0)�L(�0
,�) = a0 +

b0

�
�

NX

i=1

⇢c

✓
r
0

�

◆
�

for some constants a0 and b0. Then note that h2(�) is a con-
vex function in 1/� since the first term is linear and ⇢c(x)/x
is a concave function in x � 0. Furthermore, since h2(�0) =
0, it follows that h2(�) � 0, i.e., g2(�|�0

,�
0) � L(�0

,�), for
all � > 0. This proves that g2 verifies (13). Next consider the
difference function

h1(�) = g1(�|�0
,�

0)� L(�,�0)

= cnst +
NX

i=1

✓⇥
r
0
 ,i � r

0
i

⇤
ri +

1

2
r
2
i

◆
1

�0 �
NX

i=1

⇢c

✓
ri

�0

◆
�
0
.

The Hessian matrix of the difference function h1 is

H1 =
@
2
h1

@�@�> =
1

�0

NX

i=1

⇢
1�  0

c

✓
ri

�0

◆�
xix

>
i .



Note that 0   
0
c(x)  1. Thus the matrix H1 is a positive

semi-definite matrix, and thus the difference function h1 is
a convex function with a minimum at �0. These results and
the fact that h1(�0) = 0 imply that g1(�|�0

,�
0) � L(�,�0),

8�. In next theorem we obtain the minimizers. The proof is
omitted due to lack of space.

Theorem 1. The MM update of scale is

�
(n+1) = argmin

�>0
g2(�|�(n)

,�
(n)) = �

(n)
⌧ (17)

where

⌧ =
1p
2N↵

���� c

✓
r
(n)

�(n)

◆����. (18)

and r
(n) = y �X�

(n). The MM update for regression is

�
(n+1) = argmin

�2Rp+1

g1(�|�(n)
,�

(n+1)) = �
(n) + �

where

� = X
+
 c

✓
r
(n)

�(n+1)

◆
�
(n+1) (19)

and X
+ = (X>

X)�1
X

>.

The updates of Theorem 1 thus form the basic frame for
the MM algorithm that is described in algorithm 1.

4.2. Step size selection

An additional change to the MM algorithm is the introduction
of the step sizes in line 2 and line 4.

Since the update for � can be viewed as a gradient descent
move towards the direction �, one may try to identify an opti-
mal step size that maximally reduces the objective function at
each iteration. In other words, we minimize Huber’s criterion
L(�,�) with � = �

(n+1) and � fixed at � = �
(n) + µ�:

µ
(n+1) = argmin

µ

NX

i=1

⇢c

✓
yi � x

>
i (�

(n) + µ�)

�(n+1)

◆

= argmin
µ

NX

i=1

⇢c

✓
r
(n)
i � µx

>
i �

�(n+1)

◆
. (20)

Solving (20) is equivalent to computing Huber’s M -estimator
of regression with auxiliary scale �(n+1) in the simple (one
predictor) linear regression model with response vector r(n)
and regressor z = X�. A standard approach for finding the
(unique) minimizer of the convex optimization problem in
(20) is the iteratively reweighted LS (IRWLS) algorithm [14]
which iterates the steps

w w

✓
r
(n) � µz

�(n+1)

◆
, µ  kzk�2

w hr(n), ziw (21)

until convergence given an initial value of µ to start the iter-
ations. Here ha,biw =

PN
i=1 aibiwi and kak2w = ha,aiw.

Algorithm 1: hubreg, solves (4) via MM.
input : (y,X), threshold c > 0, initial guess

(�(0)
,�

(0)), ✏ > 0, µ(0) = 0 and �(0) = 1
initialize: Niter 2 N, compute ↵ = ↵(c) in (8) and

X
+

for n = 0, 1, . . . , Niter do
1 Update the residual r(n) = y �X�

(n) and ⌧ in
(18)

2 Update the step size for scale:

�
(n+1) = �

(n) +

log

���� c

⇣
r
(n)

�(n)⌧�
(n)

⌘ 1p
2↵N

����
log ⌧

3 Update scale �(n+1) = �
(n)
⌧
�(n+1)

and � in (19)
4 Update the step size for regression:

z = X�, w = w

✓
r
(n) � µ

(n)
z

�(n+1)

◆

µ
(n+1) = kzk�2

w hr(n), ziw

5 Update the regression vector:
�
(n+1) = �

(n) + µ
(n+1)

�

if kµ(n+1)
�k/k�(n)k < ✏ & |⌧�(n+1) � 1| < ✏

then
return (�̂, �̂) (�(n+1)

,�
(n+1))

output : (�̂, �̂), the minimizer of L(�,�).

Instead of iterating until convergence, we use a 1-step estima-
tor, which correspond to a single iteration of (21) with initial
value given by previous value of step size µ

(n). This results
to the update shown in line 4 of algorithm 1.

Next we turn our attention to the step size for scale. First
we note that the update �(n+1) = �

(n)
⌧ can be viewed as a

gradient descent move in the log-space (after change of vari-
ables a = log �, i.e, � = e

a), a(n+1) = a
(n) + � log(⌧) with

stepsize � = 1. Thus employing a data adaptive step size
� = �

(n+1) translates to update �(n+1) = �
(n)
⌧
�(n+1)

. We
then identify an optimal step size that maximally reduces the
objective function in each iteration. In other words, we mini-
mize Huber’s criterion L(�,�) with � fixed at � = �

(n) and
� = �

(n)
⌧
�:

�
(n+1) = argmin

�
N↵⌧

� +
NX

i=1

⇢c

✓
r̃
(n)
i

⌧�

◆
⌧
� (22)

where r̃
(n)
i = r

(n)
i /�

(n) = (yi � x
>
i �

(n))/�(n). As was
shown in Theorem 1, an MM algorithm that finds the opti-



mum of (22) would iterate

⌧
�  ⌧

�

���� c

✓
r̃
(n)

⌧�

◆
1p
2N↵

����

starting from some initial value for � until convergence. The
iteration update above can be written equivalently as

� �+ log

���� c

�
r̃
(n)

/⌧
�
� 1p

2N↵

���� / log ⌧. (23)

Again, instead of iterating (23) until convergence, we use a 1-
step estimator, which correspond to a single iteration of (23)
with initial value given by previous value of step size �(n).
This results to the update shown in line 2 of algorithm 1.

5. SPARSE LEARNING VIA HUBER’S CRITERION

Next consider a sparse signal recovery (SSR) problem [4,
5], where � in (1) is K-sparse, i.e., the support � = {i 2
{1, . . . , p} : �i 6= 0} has at most K-nonzero elements, so
k�k0 = |�|  K. Furthermore, the dimensionality p can
be greater than the number of measurements N . This means
that the design matrix X can be underdetermined (and not of
full rank). In the context of SSR, X is often referred to as
measurement matrix or dictionary and � as the signal vector.

Traditional non-robust approaches aim at minimizing
ky �X�k2 w.r.t. � subject to k�k0  K. This is a combi-
natorial NP-hard problem. However, when the measurement
matrix X satisfies certain coherence conditions, bounds on
the recovery error are known for several reconstruction al-
gorithms when the measurements are corrupted by noise
with bounded norm. One such algorithm is the normalized
iterative hard-thresholding (NIHT) algorithm [15].

The greedy NIHT approach for minimizing L(�,�) sub-
ject to k�k0  K iterates the following steps [6]:

1. update r
(n) = y �X�

(n) and ⌧ in (18).

2. update the step size �(n+1) for scale.

3. update the scale �(n+1) = �
(n)
⌧
�(n+1)

.

4. update the step size µ
(n+1) for signal vector.

5. update r
(n+1)
 =  c

✓
r
(n)

�(n+1)

◆
�
n+1.

6. �(n+1) = HK

�
�
(n) + µ

(n+1)
X

>
r
(n+1)
 

�
.

until convergence, where HK(�) denotes the hard thresh-
olding operator: it retains the K elements of vector � that
are largest in absolute value and set the other elements to
zero. The step size for scale and regression can be found
as described in algorithm 1. This robust SSR method de-
scribed above is the same as in [6] except we have incorpo-
rated the proposed step size for scale. We refer to this method

as HUBNIHT in the sequel. Extension of [6] to simultaneous
SSR [5] problem has been covered in [7] and [16] for real-
and complex-valued signals, respectively (and referred to as
HUBSNIHT).

6. APPLICATIONS

6.1. Regression example

First we consider a simple regression experiment to validate
the proposed MM framework for Huber’s criterion. We con-
sider a linear model as in (1) where N = 500, p = 250, the ei
are generated through standardized Gaussian distribution and
� is chosen so that the signal to noise ratio is SNR = 20dB.
Additionally, some errors are introduced into the model by
changing the sign of random samples yi chosen according to
a binomial distribution with probability ✏. We then compare
the performance of the hubreg estimator (c = 1.345) of algo-
rithm 1 compared to the LS estimate (LSE) for regression and
standard deviation (SD) for scale by performing 2000 Monte-
Carlo trials. The results displayed in Figure 1 show that while
the estimation is correct for both methods when there is no
outliers, the hubreg estimator is more robust to the presence
of errors.
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Fig. 1. Evolution of estimation error versus ✏. N = 500,
p = 250, SNR = 20dB, c = 1.345, 2000 trials.

6.2. Image denoising

To illustrate potential applications of the sparse framework
presented in section 5, we consider an image denoising prob-
lem of a grayscale image. Following a sliding windows ap-
proach, we consider the pixel values y on the local patch as
the outputs of a linear model where the inputs X constitutes
an overcomplete dictionary. Such dictionaries contain more
atoms than their dimensions and are often redundant so a valid
representation of the image must be sparse. Given this dictio-
nary, an encoding �̂ can be obtained by minimizing Huber’s
criterion with K-sparsity constraint using the HUBNIHT al-
gorithm. Thanks to the robustness of this criterion to outliers,
as shown previously, it is possible to reconstruct pixels values
ŷ = X�̂ that are less affected by the noise.

An example of denoising via sparse reconstruction by us-
ing Huber’s criterion is given in Figure 2. The dictionary,
of size p = 192, has been constructed using standard De-
baucheries and Coiflets dictionaries often used in image pro-



cessing applications and a window of size 8 ⇥ 8 has been
used. The difference between the two obtained results high-
light that there is a compromise between sparsity to reduce
noise and loss of details in the original image.
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Fig. 2. i) Original Image. ii) Noisy image. iii) Reconstructed
image (K = 6). iv) Reconstructed image (K = 10).

6.3. Dictionary learning

Finally, let us consider the problem of dictionary learning
which aims at finding a sparse representation as in the SSR
problem but also aims to learn the dictionary directly from
the data. This can be formulated as the following optimiza-
tion problem:

min
�,X2D

ky �X�k2 subject to k�k0  K, (24)

where D is a set imposing constraints to the dictionary ele-
ments in order help resolve the scale invariance problem be-
tween (�,X). Among those constraints, unit `2 or Frobenius
norm of each column of X are often used in the literature.
Traditionally algorithms to solve (24) iterate between a step
of sparse coding, X being fixed, and a step of estimation X,
where � is fixed (obtained by sparse coding). Popular algo-
rithms include the Method of Optimal Directions (MOD) [17]
or the K-SVD [18] algorithms which both do sparse coding
using matching pursuit algorithm and differs in the way the
dictionary is computed. Since the present MM-framework
presented in this paper has been successfully applied to sparse
coding, it can replace the matching pursuit used in both ap-
proaches. This plug-in methodology is expected to inherit
robustness properties from Huber’s estimates. This research
direction will be studied in the subsequent extended journal
version of this work.
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