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= Newton Method



e
Newton Method - Motivation

Key Insight

® Steepest descent: navigating with only immediate slope

® Newton method: having detailed topographic map

® Incorporates curvature information (how slope changes)

Uses second-order Taylor approximation

Strategy

Instead of minimizing f directly, minimize simpler quadratic approximation:

1
f(xk +p) ~ f(xk) + VF(xe) p + ipTV2f(xk)p
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Newton Method - Algorithm

Derivation

Setting gradient of quadratic approximation to zero:

Vf(xk) + V2f(x)p =0
Solving for Newton step:

Pk = —[V2f(xk)] 1V F(x)

Newton lteration

Xk4+1 = Xk — [sz(xk)]71Vf(Xk)
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Newton Method - Properties

® Recognizes elongated valley shapes via Hessian

® Takes larger steps along valley floor, smaller steps perpendicular

Eliminates zigzag behavior of steepest descent

Natural step size of a« = 1

Quadratic convergence rate

Special Property

For quadratic functions: Newton method finds exact minimum in single step, re-
gardless of conditioning!
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Newton Method - Challenges

Main Drawbacks

® Requires computation of Hessian matrix V2f(x)

Need to solve linear system at each iteration

Hessian may not be positive definite away from solution

Expensive: O(n®) operations per iteration

When Newton Fails

When V2f, is not positive definite:
® Newton direction may not be defined
® May not satisfy descent condition V£ plN < 0




»  Quasi-Newton Methods



Quasi-Newton Methods - Motivation

® Avoid computing exact Hessian V£,

e Use approximation By ~ V?f
® Update approximation using gradient information

® Achieve superlinear convergence without Hessian computation

Quasi-Newton Direction

px = —B, ' Vf

where By is updated after each step.
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The Secant Equation

Key Requirement

We want By to satisfy:

Bri1sk = y«
where:
® si = Xk+1 — Xk (displacement)

® yi = Vi1 — Vi (gradient change)

Curvature Condition

For positive definite updates, we need:
spyk >0

This is guaranteed by Wolfe line search conditions.
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= BFGS Method



e
BFGS Method

Most Popular Quasi-Newton Method

Named after Broyden, Fletcher, Goldfarb, and Shanno.

BFGS Update Formula

Hii1 = (I - kaky[) Hy (I — pkykS[) + PKSKSL

where:

® H, = B, ' (inverse Hessian approximation)
1
v sk

.pk:
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BFGS Algorithm

Algorithm Steps

1. Choose initial xg and Hp (often Hy = I)
2. While | V|| > €

® Compute search direction: py = —H(Vf,

® Line search: find ay satisfying Wolfe conditions
Update: Xx11 = Xk + axPk

Compute: Sk = Xk+1 — Xk, Yk = ka+1 — ka
Update Hy, 1 using BFGS formula
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BFGS Properties

Key Advantages

Only O(n?) operations per iteration

Superlinear convergence rate

® Maintains positive definiteness automatically

Self-correcting: bad approximations get corrected

No second derivatives required

Convergence Comparison

Method Steepest Descent BFGS
[terations 5264 34
Convergence Linear Superlinear

Example on Rosenbrock function from (—1.2,1).
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= SR1 Method



Symmetric Rank-1 (SR1) Method

Rank-1 Update

(Yx — Bisk)(yx — Bisk)

T

B.., =B
A S (yk — Bisk) sk

Key Differences from BFGS

Rank-1 update (vs. rank-2 for BFGS)

® Does not maintain positive definiteness

Can handle indefinite Hessians

Often produces better Hessian approximations
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SR1 Implementation Issues

Potential Problems

® Denominator can vanish: (yx — Bgsi) sk =0
® No symmetric rank-1 update may exist

® Numerical instabilities possible

Safeguard Strategy

Skip update when:

sk (v — Bsi)| < rlisillllyx — Bl

where r ~ 1078 is small tolerance.

11



.
SR1 - Finite Termination Property

Remarkable Property

For quadratic functions, SR1 method:

® Converges to minimizer in at most n steps
® Satisfies secant equation for all previous directions

® Recovers exact Hessian: H, = A1 after n steps

Advantage over BFGS

This property holds regardless of line search accuracy, while BFGS requires exact
line search for similar guarantees.
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= Convergence Theory



Global Convergence

Zoutendijk’s Condition

For line search methods satisfying Wolfe conditions:

(o ¢]
Zcos2 0kl VFi? < o0
k=0

where 6y is angle between search direction and negative gradient.

Newton-like Methods

If px = —B;1ka with bounded condition number:

IBwlIBL | < M

Then: cosfy > 1/M and limy_, ||V k|| = 0.
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Rate of Convergence

Convergence Rates

e Steepest Descent: Linear convergence
® Newton: Quadratic convergence (near solution)

® Quasi-Newton: Superlinear convergence

Practical Performance

® Newton: Fastest per iteration, but expensive
® BFGS: Good balance of speed and cost

® Steepest Descent: Slow but simple and robust
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Implementation Considerations

Step Size Strategy

e Always try o =1 first (Newton step)
e Use Wolfe conditions for line search

® BFGS: accept @ = 1 eventually for superlinear convergence

Initial Hessian Approximation

Common choices for Hy:

® |dentity matrix: Hg =1
® Scaled identity: Hy = BI

yd so

o After first step: Hp = o
0
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Summary

Method Comparison
Method Cost/Iter | Convergence Hessian
Steepest Descent O(n) Linear Not needed
Newton O(n%) Quadratic Required
BFGS 0O(n?) Superlinear | Approximated
SR1 O(n?) Superlinear | Approximated

Practical Recommendation

BFGS is the most widely used method due to its excellent balance of:
® Fast convergence (superlinear)

® Moderate computational cost

Robust performance

No second derivatives required 16




= Exercises



Exercise 1: Himmelblau Function

Problem Statement

Implement BFGS and SR1 methods to minimize the Himmelblau function:
f(x1, %) = (62 +x20 — 11)2 + (x1 + x5 — 7)2

1. Compute the gradient V£ (xg, x2) analytically
Implement both BFGS and SR1 algorithms with Wolfe line search
Test from starting points: (0,0), (1,1), (—1,1), (4,4)

Compare convergence behavior, number of iterations, and final solutions

S

Plot convergence trajectories on contour plot
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Exercise 2: Mixed Function

Problem Statement

Implement BFGS and SR1 methods to minimize: f(xi,x2) = 3x? + x1 cos(x2)

1. Derive the gradient V£ (x1, x) and Hessian V2f(xq, x)
2. Implement BFGS, SR1, and exact Newton method

3. Use starting points: (1,0), (2, 7), (—1,7/2)

4. Compare all three methods in terms of:

® Convergence speed
® Final solutions found
® Robustness to different starting points
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