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Newton Method - Motivation

Key Insight

• Steepest descent: navigating with only immediate slope
• Newton method: having detailed topographic map
• Incorporates curvature information (how slope changes)
• Uses second-order Taylor approximation

Strategy

Instead of minimizing f directly, minimize simpler quadratic approximation:

f (xk + p) ≈ f (xk) +∇f (xk)Tp+
1

2
pT∇2f (xk)p
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Newton Method - Algorithm

Derivation

Setting gradient of quadratic approximation to zero:

∇f (xk) +∇2f (xk)p = 0

Solving for Newton step:

pNk = −[∇2f (xk)]
−1∇f (xk)

Newton Iteration

xk+1 = xk − [∇2f (xk)]
−1∇f (xk)
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Newton Method - Properties

Advantages

• Recognizes elongated valley shapes via Hessian
• Takes larger steps along valley floor, smaller steps perpendicular
• Eliminates zigzag behavior of steepest descent
• Natural step size of ¸ = 1

• Quadratic convergence rate

Special Property

For quadratic functions: Newton method finds exact minimum in single step, re-
gardless of conditioning!
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Newton Method - Challenges

Main Drawbacks

• Requires computation of Hessian matrix ∇2f (x)

• Need to solve linear system at each iteration
• Hessian may not be positive definite away from solution
• Expensive: O(n3) operations per iteration

When Newton Fails

When ∇2fk is not positive definite:
• Newton direction may not be defined
• May not satisfy descent condition ∇f Tk pNk < 0
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Quasi-Newton Methods - Motivation

Core Idea

• Avoid computing exact Hessian ∇2fk
• Use approximation Bk ≈ ∇2fk
• Update approximation using gradient information
• Achieve superlinear convergence without Hessian computation

Quasi-Newton Direction

pk = −B−1
k ∇fk

where Bk is updated after each step.
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The Secant Equation

Key Requirement

We want Bk+1 to satisfy:
Bk+1sk = yk

where:
• sk = xk+1 − xk (displacement)
• yk = ∇fk+1 −∇fk (gradient change)

Curvature Condition

For positive definite updates, we need:

sTk yk > 0

This is guaranteed by Wolfe line search conditions.
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BFGS Method

Most Popular Quasi-Newton Method

Named after Broyden, Fletcher, Goldfarb, and Shanno.

BFGS Update Formula

Hk+1 =
“
I− ȷksky

T
k

”
Hk

“
I− ȷkyks

T
k

”
+ ȷksks

T
k

where:
• Hk = B−1

k (inverse Hessian approximation)
• ȷk = 1

yTk sk
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BFGS Algorithm

Algorithm Steps

1. Choose initial x0 and H0 (often H0 = I)
2. While ∥∇fk∥ > ›:

• Compute search direction: pk = −Hk∇fk
• Line search: find ¸k satisfying Wolfe conditions
• Update: xk+1 = xk + ¸kpk
• Compute: sk = xk+1 − xk , yk = ∇fk+1 −∇fk
• Update Hk+1 using BFGS formula
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BFGS Properties

Key Advantages

• Only O(n2) operations per iteration
• Superlinear convergence rate
• Maintains positive definiteness automatically
• Self-correcting: bad approximations get corrected
• No second derivatives required

Convergence Comparison

Method Steepest Descent BFGS
Iterations 5264 34
Convergence Linear Superlinear

Example on Rosenbrock function from (−1:2; 1).
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Symmetric Rank-1 (SR1) Method

Rank-1 Update

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk

Key Differences from BFGS

• Rank-1 update (vs. rank-2 for BFGS)
• Does not maintain positive definiteness
• Can handle indefinite Hessians
• Often produces better Hessian approximations
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SR1 Implementation Issues

Potential Problems

• Denominator can vanish: (yk − Bksk)T sk = 0

• No symmetric rank-1 update may exist
• Numerical instabilities possible

Safeguard Strategy

Skip update when:

|sTk (yk − Bksk)| < r∥sk∥∥yk − Bksk∥

where r ≈ 10−8 is small tolerance.
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SR1 - Finite Termination Property

Remarkable Property

For quadratic functions, SR1 method:
• Converges to minimizer in at most n steps
• Satisfies secant equation for all previous directions
• Recovers exact Hessian: Hn = A−1 after n steps

Advantage over BFGS

This property holds regardless of line search accuracy, while BFGS requires exact
line search for similar guarantees.
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Global Convergence

Zoutendijk’s Condition

For line search methods satisfying Wolfe conditions:

∞X
k=0

cos2 „k∥∇fk∥2 <∞

where „k is angle between search direction and negative gradient.

Newton-like Methods

If pk = −B−1
k ∇fk with bounded condition number:

∥Bk∥∥B−1
k ∥ ≤ M

Then: cos „k ≥ 1=M and limk→∞ ∥∇fk∥ = 0.
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Rate of Convergence

Convergence Rates

• Steepest Descent: Linear convergence
• Newton: Quadratic convergence (near solution)
• Quasi-Newton: Superlinear convergence

Practical Performance
• Newton: Fastest per iteration, but expensive
• BFGS: Good balance of speed and cost
• Steepest Descent: Slow but simple and robust
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Implementation Considerations

Step Size Strategy

• Always try ¸ = 1 first (Newton step)
• Use Wolfe conditions for line search
• BFGS: accept ¸ = 1 eventually for superlinear convergence

Initial Hessian Approximation

Common choices for H0:
• Identity matrix: H0 = I

• Scaled identity: H0 = ˛I

• After first step: H0 =
yT0 s0
yT0 y0

I
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Summary

Method Comparison

Method Cost/Iter Convergence Hessian
Steepest Descent O(n) Linear Not needed
Newton O(n3) Quadratic Required
BFGS O(n2) Superlinear Approximated
SR1 O(n2) Superlinear Approximated

Practical Recommendation

BFGS is the most widely used method due to its excellent balance of:
• Fast convergence (superlinear)
• Moderate computational cost
• Robust performance
• No second derivatives required 16
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Exercise 1: Himmelblau Function

Problem Statement

Implement BFGS and SR1 methods to minimize the Himmelblau function:
f (x1; x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2

Tasks

1. Compute the gradient ∇f (x1; x2) analytically
2. Implement both BFGS and SR1 algorithms with Wolfe line search
3. Test from starting points: (0; 0), (1; 1), (−1; 1), (4; 4)
4. Compare convergence behavior, number of iterations, and final solutions
5. Plot convergence trajectories on contour plot
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Exercise 2: Mixed Function

Problem Statement

Implement BFGS and SR1 methods to minimize: f (x1; x2) = 1
2x

2
1 + x1 cos(x2)

Tasks

1. Derive the gradient ∇f (x1; x2) and Hessian ∇2f (x1; x2)

2. Implement BFGS, SR1, and exact Newton method
3. Use starting points: (1; 0), (2; ı), (−1; ı=2)

4. Compare all three methods in terms of:
• Convergence speed
• Final solutions found
• Robustness to different starting points
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