Numerical optimization : theory and applications

Ammar Mian Associate professor, LISTIC, Université Savoie Mont Blanc

Outline

- Newton Method
- Quasi-Newton Methods
- BFGS Method
- SR1 Method
- Convergence Theory
- Exercises

Newton Method

- Quasi-Newton Methods
- BFGS Method
- SR1 Method
- Convergence Theory
- Exercises

Newton Method - Motivation

Key Insight

- Steepest descent: navigating with only immediate slope
- Newton method: having detailed topographic map
- Incorporates curvature information (how slope changes)
- Uses second-order Taylor approximation

Strategy

Instead of minimizing f directly, minimize simpler quadratic approximation:

$$f(\mathbf{x}_k + \mathbf{p}) \approx f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \nabla^2 f(\mathbf{x}_k) \mathbf{p}$$

Newton Method - Algorithm

Derivation

Setting gradient of quadratic approximation to zero:

$$abla f(\mathbf{x}_k) +
abla^2 f(\mathbf{x}_k) \mathbf{p} = \mathbf{0}$$

Solving for Newton step:

$$\mathbf{p}_k^N = -[\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Newton Iteration

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Newton Method - Properties

Advantages

- Recognizes elongated valley shapes via Hessian
- Takes larger steps along valley floor, smaller steps perpendicular
- Eliminates zigzag behavior of steepest descent
- Natural step size of $\alpha = 1$
- Quadratic convergence rate

Special Property

For quadratic functions: Newton method finds exact minimum in single step, regardless of conditioning!

Main Drawbacks

- Requires computation of Hessian matrix $\nabla^2 f(\mathbf{x})$
- Need to solve linear system at each iteration
- Hessian may not be positive definite away from solution
- Expensive: $O(n^3)$ operations per iteration

When Newton Fails

When $\nabla^2 f_k$ is not positive definite:

- Newton direction may not be defined
- May not satisfy descent condition $\nabla f_k^T \mathbf{p}_k^N < 0$

- Newton Method
- Quasi-Newton Methods
- BFGS Method
- SR1 Method
- Convergence Theory
- Exercises

Quasi-Newton Methods - Motivation

Core Idea

- Avoid computing exact Hessian $\nabla^2 f_k$
- Use approximation $\mathbf{B}_k \approx \nabla^2 f_k$
- Update approximation using gradient information
- Achieve superlinear convergence without Hessian computation

Quasi-Newton Direction

$$\mathbf{p}_k = -\mathbf{B}_k^{-1} \nabla f_k$$

where \mathbf{B}_k is updated after each step.

The Secant Equation

Key Requirement

We want \mathbf{B}_{k+1} to satisfy:

$$\mathbf{B}_{k+1}\mathbf{s}_k=\mathbf{y}_k$$

where:

• $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$ (displacement)

•
$$\mathbf{y}_k =
abla f_{k+1} -
abla f_k$$
 (gradient change)

Curvature Condition

For positive definite updates, we need:

 $\mathbf{s}_k^T \mathbf{y}_k > 0$

This is guaranteed by Wolfe line search conditions.

- Newton Method
- Quasi-Newton Methods
- BFGS Method
- SR1 Method
- Convergence Theory
- Exercises

BFGS Method

Most Popular Quasi-Newton Method

Named after Broyden, Fletcher, Goldfarb, and Shanno.

BFGS Update Formula

$$\mathbf{H}_{k+1} = \left(\mathbf{I} - \rho_k \mathbf{s}_k \mathbf{y}_k^T\right) \mathbf{H}_k \left(\mathbf{I} - \rho_k \mathbf{y}_k \mathbf{s}_k^T\right) + \rho_k \mathbf{s}_k \mathbf{s}_k^T$$

where:

BFGS Algorithm

Algorithm Steps

- 1. Choose initial \textbf{x}_0 and \textbf{H}_0 (often $\textbf{H}_0=\textbf{I})$
- **2.** While $\|\nabla f_k\| > \epsilon$:
 - Compute search direction: $\mathbf{p}_k = -\mathbf{H}_k \nabla f_k$
 - Line search: find α_k satisfying Wolfe conditions
 - Update: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$
 - Compute: $\mathbf{s}_k = \mathbf{x}_{k+1} \mathbf{x}_k$, $\mathbf{y}_k = \nabla f_{k+1} \nabla f_k$
 - Update \mathbf{H}_{k+1} using BFGS formula

BFGS Properties

Key Advantages

- Only $O(n^2)$ operations per iteration
- Superlinear convergence rate
- Maintains positive definiteness automatically
- Self-correcting: bad approximations get corrected
- No second derivatives required

Convergence Comparison

Method	Steepest Descent	BFGS
Iterations	5264	34
Convergence	Linear	Superlinear

Example on Rosenbrock function from (-1.2, 1).

- Newton Method
- Quasi-Newton Methods
- BFGS Method

SR1 Method

- Convergence Theory
- Exercises

Symmetric Rank-1 (SR1) Method

Bank-1 Update $\mathbf{B}_{k+1} = \mathbf{B}_k + \frac{(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)^T}{(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k}$

Key Differences from BFGS

- Rank-1 update (vs. rank-2 for BFGS)
- Does not maintain positive definiteness
- Can handle indefinite Hessians
- Often produces better Hessian approximations

SR1 Implementation Issues

Potential Problems

- Denominator can vanish: $(\mathbf{y}_k \mathbf{B}_k \mathbf{s}_k)^T \mathbf{s}_k = 0$
- No symmetric rank-1 update may exist
- Numerical instabilities possible

Safeguard Strategy

Skip update when:

$$|\mathbf{s}_k^{\mathsf{T}}(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)| < r \|\mathbf{s}_k\| \|\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k\|$$

where $r \approx 10^{-8}$ is small tolerance.

SR1 - Finite Termination Property

Remarkable Property

For quadratic functions, SR1 method:

- Converges to minimizer in at most *n* steps
- Satisfies secant equation for all previous directions
- Recovers exact Hessian: $\mathbf{H}_n = A^{-1}$ after *n* steps

Advantage over BFGS

This property holds regardless of line search accuracy, while BFGS requires exact line search for similar guarantees.

- Newton Method
- Quasi-Newton Methods
- BFGS Method
- SR1 Method
- Convergence Theory
- Exercises

Global Convergence

Zoutendijk's Condition

For line search methods satisfying Wolfe conditions:

$$\sum_{k=0}^{\infty}\cos^2\theta_k \|\nabla f_k\|^2 < \infty$$

where θ_k is angle between search direction and negative gradient.

Newton-like Methods

If $\mathbf{p}_k = -\mathbf{B}_k^{-1} \nabla f_k$ with bounded condition number:

 $\|\mathbf{B}_k\|\|\mathbf{B}_k^{-1}\| \le M$

Then: $\cos \theta_k \ge 1/M$ and $\lim_{k\to\infty} \|\nabla f_k\| = 0$.

13

Rate of Convergence

Convergence Rates

- Steepest Descent: Linear convergence
- Newton: Quadratic convergence (near solution)
- Quasi-Newton: Superlinear convergence

Practical Performance

- Newton: Fastest per iteration, but expensive
- BFGS: Good balance of speed and cost
- Steepest Descent: Slow but simple and robust

Implementation Considerations

Step Size Strategy

- Always try $\alpha = 1$ first (Newton step)
- Use Wolfe conditions for line search
- BFGS: accept $\alpha = 1$ eventually for superlinear convergence

Initial Hessian Approximation

Common choices for H_0 :

- Identity matrix: $\mathbf{H}_0 = \mathbf{I}$
- Scaled identity: $\mathbf{H}_0 = \beta \mathbf{I}$

• After first step:
$$\mathbf{H}_0 = \frac{\mathbf{y}_0^T \mathbf{s}_0}{\mathbf{y}_0^T \mathbf{y}_0}$$

Summary

Method Comparison

Method	Cost/Iter	Convergence	Hessian
Steepest Descent	O(n)	Linear	Not needed
Newton	$O(n^3)$	Quadratic	Required
BFGS	$O(n^2)$	Superlinear	Approximated
SR1	$O(n^2)$	Superlinear	Approximated

Practical Recommendation

BFGS is the most widely used method due to its excellent balance of:

- Fast convergence (superlinear)
- Moderate computational cost
- Robust performance
- No second derivatives required

- Newton Method
- Quasi-Newton Methods
- BFGS Method
- SR1 Method
- Convergence Theory
- Exercises

Problem Statement

Implement BFGS and SR1 methods to minimize the Himmelblau function: $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$

Tasks

- **1**. Compute the gradient $\nabla f(x_1, x_2)$ analytically
- 2. Implement both BFGS and SR1 algorithms with Wolfe line search
- **3.** Test from starting points: (0, 0), (1, 1), (-1, 1), (4, 4)
- 4. Compare convergence behavior, number of iterations, and final solutions
- 5. Plot convergence trajectories on contour plot

Problem Statement

Implement BFGS and SR1 methods to minimize: $f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1\cos(x_2)$

Tasks

- 1. Derive the gradient $\nabla f(x_1, x_2)$ and Hessian $\nabla^2 f(x_1, x_2)$
- 2. Implement BFGS, SR1, and exact Newton method
- **3**. Use starting points: (1, 0), $(2, \pi)$, $(-1, \pi/2)$
- 4. Compare all three methods in terms of:
 - Convergence speed
 - Final solutions found
 - Robustness to different starting points