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The Missing Piece: Understanding the Saddle Point Structure

What we covered previously: KKT conditions tell us what the solution looks like

What we missed: How to optimize the Lagrangian to find this solution

Key Question
Given L(x,A) = f(x) — Y_; Xici(x), how do we optimize over (x, A)?

The fundamental insight: The KKT conditions emerge from a saddle point structure
where:

® \We minimize over primal variables x

® \We maximize over dual variables A >0

This opposite optimization behavior is not arbitrary—it emerges naturally from the
mathematical structure of constrained optimization.
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Why the Minus Sign Creates the Right Incentives
Consider our Lagrangian: L(x,A) = f(x) — >_; Xjci(x)

What happens if we minimize over both variables?

For inequality constraint ¢;(x) > 0:

When c¢;j(x) > 0 (constraint satisfied with slack)

Term —X\;cj(x) becomes more negative as \; increases
Minimizing over A; would drive A\; — 400, making £L — —o0
This creates an unbounded optimization problem

=

The Resolution

We must maximize over A\; > 0. When ¢;(x) > 0, maximization drives A\; — 0 to
make L as large as possible, giving us complementarity: \;cj(x) = 0.

The minus sign in the Lagrangian creates the correct incentive structure for the dual
variables to encode constraint shadow prices through the saddle point property.
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The Saddle Point Property

Theorem (Saddle Point Characterization)

(x*, X\*) solves the constrained optimization problem if and only if it is a saddle
point of the Lagrangian:

L(x*,A) < L(x*,A%) < L(x,X)

for all feasible x and all A > 0.

Interpretation:
e Left inequality: £(x*,A) is maximized over X at A*
¢ Right inequality: L£(x, A*) is minimized over x at x*

Economic Insight

Dual variables A* represent shadow prices—the marginal value of relaxing con-
straints. Maximization over A finds the gconomically meaningful constraint valua-
tions.



Illustrative Example: The Saddle Point in Action
Problem: min f(x) = —(x — 3)? subject to x > 1
Lagrangian: £(x,)\) = —(x —3)? — A\(x — 1)
The conflict: Objective wants x — —o0, constraint forces x* = 1
Saddle point analysis:
or _
ox
Atx*=1: —21-3)—A=0=)\=14 (2)

—2(x —3) =X =0 (Stationarity) (1)

Verification of saddle property:
® Fix A\ =4: L(x,4) = —(x — 3)? — 4(x — 1) has unique minimum at x = 1
® Fix x =1: L£(1,\) = —4 (constant, satisfying max condition)
Shadow price: \* = 4 means relaxing x > 1 to x > 1 — € improves objective by ~ 4e.
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From Theory to Algorithm: Projected Gradient Method

The saddle point structure naturally suggests an alternating optimization scheme:

Projected Gradient Algorithm

Initialize: x°, A% >0

For Kk =0,1,2,... until convergence:
XKL = xk — 0 U, L(xK, AF) (Primal descent)
AR — max(0, Af + B VAL (xF T, AK)) (Dual ascent)

Key components:
® Primal step: Gradient descent on £ with respect to x
® Dual step: Projected gradient ascent on L with respect to A

® Projection: max(0, -) ensures dual feasibility A > 0
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Understanding the Gradient Components
For our general Lagrangian L(x, A) = f(x) — Y _; Xici(x):

Primal gradient:
ViL(x,A) = VF(x) = > AiVci(x)

Dual gradient:
oL

O

= —C,'(X)

Algorithm Updates

Xk = 5k — (Vf(xk) - Z )\f‘Vc;(xk)) (3)

AL = max(0, \K 4 Brci(x* 1)) Vi (4)

Intuition: Dual variables increase when constraints are violated (¢; < 0) and decrease

when canctrainte have clack (~ = O) natiirally driviino tonaard complementarity
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Algorithm Implementation for Our Exercise

Recall our problem:

minimize f(x,y) = (x — 2)2 + (v — 2)2 (5)
subject to: g(x,y)=x+y—-2=0 (6)
hi(x,y) =x>0 (7)
ho(x,y) =y >0 (8)
Lagrangian:
L0y, A, p2) = (x =22+ (y = 2)> = Mx +y — 2) — pax — poy
Gradients:
oL
a:Q(X—Q)—X—p,l (9)
oL
= —92) )\ — 1
S~ -2 -2 (10)
oL
5:—(x—|—y—2) (11)
oL oL
— ==X, 7 =—y (12)
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Projected Gradient Steps for Our Exercise

Algorithm updates:

XKL = Xk (2(xk —2) — Ak — k) (13)
YA = yK —a2(y* - 2) = N — u5) (14)
ARFL = 2k B(xkFL 4 yhHL _ 9) (15)
ATt = max(0, uf — Bx*T) (16)
st = max(0, us — By*H) (17)

Expected convergence: (x*,y*) = (1,1) with \* = -2, uT =u3=0

The inequality constraints x > 0,y > 0 are inactive at the solution because the
optimal point (1, 1) lies in the interior of the feasible region. Therefore uj = u5 =0
by complementarity.




Corrected Implementation and Key Takeaways

Implementation insight: The projected gradient method will automatically handle the
constraint activity determination through the projection steps.

Algorithm behavior:

Algorithm starts with some initial guess

Primal variables evolve toward (1,1) due to objective function pull
Dual variables for inactive constraints get projected to zero
Equality constraint multiplier converges to \* = —2

Main Learning Objectives

1. Saddle point structure emerges from constraint-objective conflicts
2. Opposite optimization directions (min over x, max over A, i) are mathematically

necessary
3. Projected gradient algorithm implements this structure computationally
4. Shadow prices have economic meaning: A* = —2 means relaxing the constraint

worsens the objective




