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The Missing Piece: Understanding the Saddle Point Structure

What we covered previously: KKT conditions tell us what the solution looks like

What we missed: How to optimize the Lagrangian to find this solution

Key Question

Given L(x;–) = f (x)−
P

i –ici (x), how do we optimize over (x;–)?

The fundamental insight: The KKT conditions emerge from a saddle point structure
where:
• We minimize over primal variables x

• We maximize over dual variables – ≥ 0

This opposite optimization behavior is not arbitrary—it emerges naturally from the
mathematical structure of constrained optimization.
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Why the Minus Sign Creates the Right Incentives
Consider our Lagrangian: L(x;–) = f (x)−

P
i –ici (x)

What happens if we minimize over both variables?
For inequality constraint ci (x) ≥ 0:

• When ci (x) > 0 (constraint satisfied with slack)
• Term −–ici (x) becomes more negative as –i increases
• Minimizing over –i would drive –i → +∞, making L → −∞
• This creates an unbounded optimization problem

The Resolution

We must maximize over –i ≥ 0. When ci (x) > 0, maximization drives –i → 0 to
make L as large as possible, giving us complementarity: –ici (x) = 0.

The minus sign in the Lagrangian creates the correct incentive structure for the dual
variables to encode constraint shadow prices through the saddle point property.
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The Saddle Point Property

Theorem (Saddle Point Characterization)

(x?;–?) solves the constrained optimization problem if and only if it is a saddle
point of the Lagrangian:

L(x?;–) ≤ L(x?;–?) ≤ L(x;–?)

for all feasible x and all – ≥ 0.

Interpretation:
• Left inequality: L(x?;–) is maximized over – at –?

• Right inequality: L(x;–?) is minimized over x at x?

Economic Insight

Dual variables –? represent shadow prices—the marginal value of relaxing con-
straints. Maximization over – finds the economically meaningful constraint valua-
tions.
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Illustrative Example: The Saddle Point in Action

Problem: min f (x) = −(x − 3)2 subject to x ≥ 1
Lagrangian: L(x; –) = −(x − 3)2 − –(x − 1)

The conflict: Objective wants x → −∞, constraint forces x? = 1

Saddle point analysis:

@L
@x

= −2(x − 3)− – = 0 (Stationarity) (1)

At x? = 1 : − 2(1− 3)− – = 0 ⇒ –? = 4 (2)

Verification of saddle property:
• Fix – = 4: L(x; 4) = −(x − 3)2 − 4(x − 1) has unique minimum at x = 1

• Fix x = 1: L(1; –) = −4 (constant, satisfying max condition)
Shadow price: –? = 4 means relaxing x ≥ 1 to x ≥ 1− › improves objective by ≈ 4›.
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From Theory to Algorithm: Projected Gradient Method

The saddle point structure naturally suggests an alternating optimization scheme:

Projected Gradient Algorithm

Initialize: x0;–0 ≥ 0
For k = 0; 1; 2; : : : until convergence:

xk+1 = xk − ¸k∇xL(xk ;–k) (Primal descent)

–k+1 = max(0;–k + ˛k∇–L(xk+1;–k)) (Dual ascent)

Key components:
• Primal step: Gradient descent on L with respect to x

• Dual step: Projected gradient ascent on L with respect to –

• Projection: max(0; ·) ensures dual feasibility – ≥ 0
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Understanding the Gradient Components
For our general Lagrangian L(x;–) = f (x)−

P
i –ici (x):

Primal gradient:
∇xL(x;–) = ∇f (x)−

X
i

–i∇ci (x)

Dual gradient:
@L
@–i

= −ci (x)

Algorithm Updates

xk+1 = xk − ¸k

 
∇f (xk)−

X
i

–ki ∇ci (xk)
!

(3)

–k+1
i = max(0; –ki + ˛kci (x

k+1)) ∀i (4)

Intuition: Dual variables increase when constraints are violated (ci < 0) and decrease
when constraints have slack (ci > 0), naturally driving toward complementarity.
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Algorithm Implementation for Our Exercise
Recall our problem:

minimize f (x; y) = (x − 2)2 + (y − 2)2 (5)
subject to: g(x; y) = x + y − 2 = 0 (6)

h1(x; y) = x ≥ 0 (7)
h2(x; y) = y ≥ 0 (8)

Lagrangian:

L(x; y ; –; —1; —2) = (x − 2)2 + (y − 2)2 − –(x + y − 2)− —1x − —2y

Gradients:
@L
@x

= 2(x − 2)− –− —1 (9)

@L
@y

= 2(y − 2)− –− —2 (10)

@L
@–

= −(x + y − 2) (11)

@L
@—1

= −x; @L
@—2

= −y (12)7



Projected Gradient Steps for Our Exercise
Algorithm updates:

xk+1 = xk − ¸(2(xk − 2)− –k − —k
1) (13)

yk+1 = yk − ¸(2(yk − 2)− –k − —k
2) (14)

–k+1 = –k + ˛(xk+1 + yk+1 − 2) (15)

—k+1
1 = max(0; —k

1 − ˛xk+1) (16)

—k+1
2 = max(0; —k

2 − ˛yk+1) (17)

Expected convergence: (x?; y?) = (1; 1) with –? = −2, —?
1 = —?

2 = 0

Key Insight

The inequality constraints x ≥ 0; y ≥ 0 are inactive at the solution because the
optimal point (1; 1) lies in the interior of the feasible region. Therefore —?

1 = —?
2 = 0

by complementarity.
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Corrected Implementation and Key Takeaways
Implementation insight: The projected gradient method will automatically handle the
constraint activity determination through the projection steps.

Algorithm behavior:
• Algorithm starts with some initial guess
• Primal variables evolve toward (1; 1) due to objective function pull
• Dual variables for inactive constraints get projected to zero
• Equality constraint multiplier converges to –? = −2

Main Learning Objectives

1. Saddle point structure emerges from constraint-objective conflicts
2. Opposite optimization directions (min over x, max over –;—) are mathematically
necessary
3. Projected gradient algorithm implements this structure computationally
4. Shadow prices have economic meaning: –? = −2 means relaxing the constraint
worsens the objective
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