Numerical optimization : theory and applications

Ammar Mian Associate professor, LISTIC, Université Savoie Mont Blanc

Outline

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

1. Introduction to Constrained Optimization

- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Context and Motivation

- Unconstrained optimization: We could freely minimize $f(\mathbf{x})$ over \mathbb{R}^n
- Real-world problems: Often have restrictions on variables
- Examples: Resource limits, physical constraints, design specifications

Goal: Characterize solutions when constraints are present, extending our knowledge from unconstrained optimization.

Problem Formulation

General Constrained Optimization Problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \quad \text{subject to} \quad \begin{cases} c_i(\mathbf{x}) = 0, & i \in \mathcal{E} \\ c_i(\mathbf{x}) \ge 0, & i \in \mathcal{I} \end{cases}$$

where:

- *f*: objective function
- $c_i, i \in \mathcal{E}$: equality constraints
- $c_i, i \in \mathcal{I}$: inequality constraints
- $\Omega = \{ \mathbf{x} \mid c_i(\mathbf{x}) = 0, i \in \mathcal{E}; c_i(\mathbf{x}) \ge 0, i \in \mathcal{I} \}$: feasible set

1. Introduction to Constrained Optimization

2. Local and Global Solutions

3. Smoothness

4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints

5. First-Order Optimality Conditions

- Statement of First-Order Necessary Conditions
- Sensitivity

6. Derivation of First-Order Conditions

- Feasible Sequences
- Characterizing Limiting Directions
- Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Impact of Constraints on Solutions

Constraints can:

- Simplify: Exclude many local minima \Rightarrow easier to find global minimum
- Complicate: Create infinitely many solutions

Example 1: min $\|\mathbf{x}\|_2^2$ subject to $\|\mathbf{x}\|_2^2 \ge 1$

- Unconstrained: unique solution $\mathbf{x} = \mathbf{0}$
- Constrained: any **x** with $\|\mathbf{x}\|_2 = 1$ solves the problem

Solution Definitions

Definition (Local solution)

 \bm{x}^\star is a local solution if $\bm{x}^\star\in\Omega$ and there exists neighborhood $\mathcal N$ of \bm{x}^\star such that

 $f(\mathbf{x}) \geq f(\mathbf{x}^{\star})$ for all $\mathbf{x} \in \mathcal{N} \cap \Omega$

Definition (Strict local solution)

 \bm{x}^\star is a strict local solution if $\bm{x}^\star\in\Omega$ and there exists neighborhood $\mathcal N$ of \bm{x}^\star such that

 $f(\mathbf{x}) > f(\mathbf{x}^{\star})$ for all $\mathbf{x} \in \mathcal{N} \cap \Omega, \mathbf{x} \neq \mathbf{x}^{\star}$

1. Introduction to Constrained Optimization

2. Local and Global Solutions

3. Smoothness

4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Smoothness and Constraint Representation

Key insight: Nonsmooth boundaries can often be described by smooth constraint functions.

Diamond example: $\|\mathbf{x}\|_1 = |x_1| + |x_2| \le 1$

- Nonsmooth: Single constraint with absolute values
- Smooth equivalent: Four linear constraints:

$$x_1 + x_2 \le 1$$
, $x_1 - x_2 \le 1$, $-x_1 + x_2 \le 1$, $-x_1 - x_2 \le 1$

[Visualization: Diamond constraint representation]

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions

3. Smoothness

4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints

5. First-Order Optimality Conditions

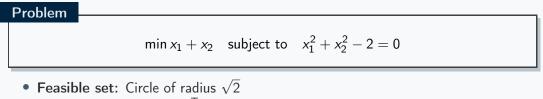
- Statement of First-Order Necessary Conditions
- Sensitivity

6. Derivation of First-Order Conditions

- Feasible Sequences
- Characterizing Limiting Directions
- Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

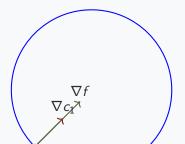
- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Example 1: Single Equality Constraint



- Solution: $\mathbf{x}^{\star} = (-1, -1)^{T}$ (by inspection)
- Key observation: At solution, $\nabla f(\mathbf{x}^*)$ and $\nabla c_1(\mathbf{x}^*)$ are parallel

$$x_1^2 + x_2^2 = 2$$



Optimality Condition for Equality Constraints

Necessary Condition

At solution \mathbf{x}^{\star} , there exists λ_1^{\star} such that:

$$abla f(\mathbf{x}^{\star}) = \lambda_1^{\star}
abla c_1(\mathbf{x}^{\star})$$

Intuition:

- For feasible descent direction **d**: $\nabla c_1(\mathbf{x})^T \mathbf{d} = 0$ (stay on constraint)
- For improvement: $\nabla f(\mathbf{x})^T \mathbf{d} < 0$
- No such **d** exists when gradients are parallel

Lagrangian formulation:

$$\mathcal{L}(\mathbf{x}, \lambda_1) = f(\mathbf{x}) - \lambda_1 c_1(\mathbf{x})$$
 $abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \lambda_1^{\star}) = \mathbf{0}$

Introduction to Constrained Optimization Local and Global Solutions Smoothness Examples First-Order Optimality Conditions Derivation of First-Orde

Exercise 1

Problem Statement

Minimize: $f(x_1, x_2) = x_1 x_2$ Subject to: $x_1^2 + x_2^2 = 8$

Find the minimum value and the point(s) where it occurs.

Introduction to Constrained Optimization Local and Global Solutions Smoothness Examples First-Order Optimality Conditions Derivation of First-Orde

Solution to Exercise 1 I

Step 1: Set up the Lagrangian

$$L(x_1, x_2, \lambda) = x_1 x_2 + \lambda (x_1^2 + x_2^2 - 8)$$

Step 2: First-order conditions

$$\frac{\partial L}{\partial x_1} = x_2 + 2\lambda x_1 = 0 \quad (1) \tag{1}$$
$$\frac{\partial L}{\partial x_2} = x_1 + 2\lambda x_2 = 0 \quad (2) \tag{2}$$
$$\frac{\partial L}{\partial \lambda} = x_1^2 + x_2^2 - 8 = 0 \quad (3) \tag{3}$$

Solution to Exercise 1 II

Step 3: Solve the system From equations (1) and (2):

$$x_2 = -2\lambda x_1 \tag{4}$$

$$x_1 = -2\lambda x_2 \tag{5}$$

Substituting: $x_1 = -2\lambda(-2\lambda x_1) = 4\lambda^2 x_1$ If $x_1 \neq 0$: $1 = 4\lambda^2 \Rightarrow \lambda = \pm \frac{1}{2}$

Solution to Exercise 1 III

Case 1: $\lambda = \frac{1}{2}$

- $x_2 = -x_1$
- From constraint: $x_1^2 + x_1^2 = 8 \Rightarrow x_1 = \pm 2\sqrt{2}$
- Critical points: $(2\sqrt{2}, -2\sqrt{2})$ and $(-2\sqrt{2}, 2\sqrt{2})$

Case 2: $\lambda = -\frac{1}{2}$

- $x_2 = x_1$
- From constraint: $2x_1^2 = 8 \Rightarrow x_1 = \pm 2$
- Critical points: (2, 2) and (-2, -2)

Solution to Exercise 1 IV

Step 4: Evaluate the objective function At $(2\sqrt{2}, -2\sqrt{2})$ and $(-2\sqrt{2}, 2\sqrt{2})$:

$$f = (2\sqrt{2})(-2\sqrt{2}) = -8$$

At (2, 2) and (-2, -2):

f = (2)(2) = 4

Answer

Minimum value: -8Occurs at: $(2\sqrt{2}, -2\sqrt{2})$ and $(-2\sqrt{2}, 2\sqrt{2})$ Introduction to Constrained Optimization Local and Global Solutions Smoothness Examples First-Order Optimality Conditions Derivation of First-Orde

Problem 2

Exercise 2

Problem Statement

Minimize:
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$$

Subject to:
 $g_1: x_1 + x_2 + x_3 = 6$ (6)
 $g_2: x_1 - x_2 = 2$ (7)

Find the minimum value and the point where it occurs.

Introduction to Constrained Optimization Local and Global Solutions Smoothness Examples First-Order Optimality Conditions Derivation of First-Orde

Solution to Exercise 2 I

Step 1: Set up the Lagrangian

$$L = x_1^2 + x_2^2 + x_3^2 + \lambda_1(x_1 + x_2 + x_3 - 6) + \lambda_2(x_1 - x_2 - 2)$$

Step 2: First-order conditions

$$\frac{\partial L}{\partial x_1} = 2x_1 + \lambda_1 + \lambda_2 = 0 \quad (1) \tag{8}$$

$$\frac{\partial L}{\partial x_2} = 2x_2 + \lambda_1 - \lambda_2 = 0 \quad (2) \tag{9}$$

$$\frac{\partial L}{\partial x_3} = 2x_3 + \lambda_1 = 0 \quad (3) \tag{10}$$

$$\frac{\partial L}{\partial \lambda_1} = x_1 + x_2 + x_3 - 6 = 0 \quad (4)$$
 (11)

$$\frac{\partial L}{\partial \lambda_2} = x_1 - x_2 - 2 = 0 \quad (5) \tag{12}$$

Solution to Exercise 2 II

Step 3: Solve for variables in terms of multipliers From the first-order conditions:

$$x_3 = -\frac{\lambda_1}{2} \quad \text{from (3)} \tag{13}$$

$$x_1 = -\frac{\lambda_1 + \lambda_2}{2} \quad \text{from (1)} \tag{14}$$

$$x_2 = -\frac{\lambda_1 - \lambda_2}{2} \quad \text{from (2)} \tag{15}$$

Solution to Exercise 2 III

Step 4: Use constraints to find multipliers From constraint (5): $x_1 - x_2 = 2$

$$-\frac{\lambda_1 + \lambda_2}{2} - \left(-\frac{\lambda_1 - \lambda_2}{2}\right) = 2$$
$$-\frac{\lambda_2}{2} = 2 \Rightarrow \lambda_2 = -2$$

From constraint (4): $x_1 + x_2 + x_3 = 6$

$$-\frac{\lambda_1 + \lambda_2}{2} - \frac{\lambda_1 - \lambda_2}{2} - \frac{\lambda_1}{2} = 6$$
$$-\frac{3\lambda_1}{2} = 6 \Rightarrow \lambda_1 = -4$$

Solution to Exercise 2 IV

Step 5: Find the solution With $\lambda_1 = -4$ and $\lambda_2 = -2$:

$$x_{1} = -\frac{(-4) + (-2)}{2} = 3$$

$$x_{2} = -\frac{(-4) - (-2)}{2} = 1$$

$$x_{3} = -\frac{(-4)}{2} = 2$$
(16)
(17)
(17)
(18)

Verification: 3 + 1 + 2 = 6 and 3 - 1 = 2

Introduction to Constrained Optimization Local and Global Solutions Smoothness Examples First-Order Optimality Conditions Derivation of First-Orde

Solution to Exercise 2 V

Answer

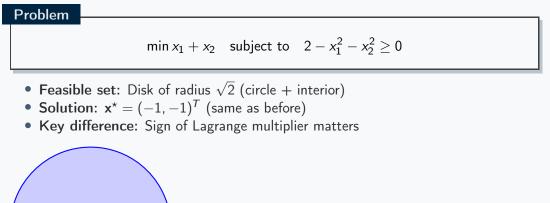
Minimum value: $3^2 + 1^2 + 2^2 = 14$ Occurs at: (3, 1, 2)

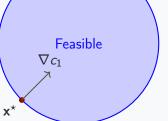
- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness

4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Example 2: Single Inequality Constraint





Two Cases for Inequality Constraints

Case I: Interior point $(c_1(\mathbf{x}) > 0)$

- Constraint not restrictive
- Necessary condition: $\nabla f(\mathbf{x}) = \mathbf{0}$
- Lagrange multiplier: $\lambda_1 = 0$

Case II: Boundary point $(c_1(\mathbf{x}) = 0)$

- Constraint is active
- Feasible descent direction \mathbf{d} : $\nabla c_1(\mathbf{x})^T \mathbf{d} \ge 0$
- No such direction when: $\nabla f(\mathbf{x}) = \lambda_1 \nabla c_1(\mathbf{x})$ with $\lambda_1 \ge 0$

Complementarity Condition

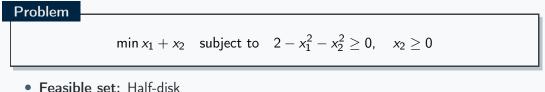
$$\lambda_1 c_1(\mathbf{x}) = 0$$

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness

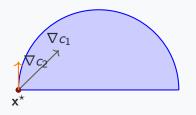
4. Examples

- A Single Equality Constraint
- A Single Inequality Constraint
- Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Example 3: Two Inequality Constraints



- Solution: $\mathbf{x}^* = (-\sqrt{2}, 0)^T$
- Both constraints active at solution



Multiple Constraints: KKT Conditions Preview

Lagrangian:

$$\mathcal{L}(\mathbf{x}, oldsymbol{\lambda}) = f(\mathbf{x}) - \lambda_1 c_1(\mathbf{x}) - \lambda_2 c_2(\mathbf{x})$$

Optimality conditions:

$$\nabla_{\mathsf{x}} \mathcal{L}(\mathsf{x}^{\star}, \boldsymbol{\lambda}^{\star}) = \mathbf{0} \tag{19}$$

$$\lambda_i^\star \ge 0 \quad \text{for all } i \in \mathcal{I}$$
 (20)

$$\lambda_i^* c_i(\mathbf{x}^*) = 0 \quad \text{for all } i \tag{21}$$

For Example 3: $\boldsymbol{\lambda}^{\star} = (1/(2\sqrt{2}), 1)^{T}$

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints

5. First-Order Optimality Conditions

- Statement of First-Order Necessary Conditions
- Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints

5. First-Order Optimality Conditions

- Statement of First-Order Necessary Conditions
- Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Active Set and Constraint Qualification

Definition (Active Set)

$$\mathcal{A}(\mathbf{x}) = \mathcal{E} \cup \{i \in \mathcal{I} \mid c_i(\mathbf{x}) = 0\}$$

Definition (Linear Independence Constraint Qualification (LICQ))

At point \mathbf{x}^* , LICQ holds if the set of active constraint gradients $\{\nabla c_i(\mathbf{x}^*), i \in \mathcal{A}(\mathbf{x}^*)\}$ is linearly independent.

Purpose: Ensures constraint gradients are well-behaved and don't vanish inappropriately.

Karush-Kuhn-Tucker (KKT) Conditions

Theorem (First-Order Necessary Conditions)

If \mathbf{x}^* is a local solution and LICQ holds at \mathbf{x}^* , then there exists $\boldsymbol{\lambda}^*$ such that:

$ abla_{x}\mathcal{L}(x^{\star}, oldsymbol{\lambda}^{\star}) = 0$		(Stationarity)
$c_i(\mathbf{x}^{\star})=0$,	$i \in \mathcal{E}$	(Equality feasibility)
$c_i(\mathbf{x}^{\star}) \geq 0$,	$i \in \mathcal{I}$	(Inequality feasibility)
$\lambda_i^\star \geq 0$,	$i \in \mathcal{I}$	(Dual feasibility)
$\lambda_i^\star c_i(\mathbf{x}^\star)=0$,	$i \in \mathcal{E} \cup \mathcal{I}$	(Complementarity)

General Lagrangian

$$\mathcal{L}(\mathbf{x}, oldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\mathbf{x})$$

KKT Conditions: Interpretation

Stationarity:
$$\nabla f(\mathbf{x}^{\star}) = \sum_{i \in \mathcal{A}(\mathbf{x}^{\star})} \lambda_i^{\star} \nabla c_i(\mathbf{x}^{\star})$$

• Objective gradient is linear combination of active constraint gradients

Complementarity: $\lambda_i^* c_i(\mathbf{x}^*) = 0$

- Either constraint is active $(c_i = 0)$ or multiplier is zero $(\lambda_i = 0)$
- Cannot have both $c_i > 0$ and $\lambda_i > 0$

Dual feasibility: $\lambda_i^* \ge 0$ for inequality constraints

- Sign restriction crucial for inequality constraints
- No sign restriction for equality constraint multipliers

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints

5. First-Order Optimality Conditions

- Statement of First-Order Necessary Conditions
- Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Economic Interpretation of Lagrange Multipliers

Sensitivity analysis: How does optimal value change when constraints are perturbed?

Consider perturbed constraint: $c_i(\mathbf{x}) \geq -\epsilon \|\nabla c_i(\mathbf{x}^{\star})\|$

Key Result $<math display="block"> \frac{df(\mathbf{x}^{\star}(\epsilon))}{d\epsilon} = -\lambda_i^{\star} \|\nabla c_i(\mathbf{x}^{\star})\|$

Interpretation:

- λ_i^{\star} measures sensitivity of optimal value to constraint *i*
- Large $\lambda_i^\star \Rightarrow$ constraint *i* is "tight" or "binding"
- $\lambda_i^{\star} = 0 \Rightarrow$ constraint *i* has little impact on optimal value

Strongly vs. Weakly Active Constraints

Definition (Strongly Active Constraints)

Inequality constraint c_i is strongly active if $i \in \mathcal{A}(\mathbf{x}^*)$ and $\lambda_i^* > 0$.

Definition (Weakly Active Constraints)

Inequality constraint c_i is weakly active if $i \in \mathcal{A}(\mathbf{x}^*)$ and $\lambda_i^* = 0$.

Economic interpretation:

- Strongly active: Relaxing constraint would improve objective
- Weakly active: Small constraint relaxation has no first-order effect

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity

6. Derivation of First-Order Conditions

- Feasible Sequences
- Characterizing Limiting Directions
- Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Feasible Sequences Approach

Definition (Feasible Sequence)

Given feasible point \mathbf{x}^* , sequence $\{\mathbf{z}_k\}$ is feasible if:

1.
$$\mathbf{z}_k \neq \mathbf{x}^*$$
 for all k

2.
$$\lim_{k\to\infty} \mathsf{z}_k = \mathsf{x}^\star$$

3. \mathbf{z}_k is feasible for all k sufficiently large

Definition (Limiting Direction)

Vector **d** is a limiting direction if:

$$\lim_{k \to \infty} \frac{\mathbf{z}_k - \mathbf{x}^\star}{\|\mathbf{z}_k - \mathbf{x}^\star\|} = \mathbf{d}$$

for some feasible sequence $\{\mathbf{z}_k\}$.

First-Order Necessary Condition via Feasible Sequences

Theorem (Feasible Sequence Necessary Condition)

If x^{\star} is a local solution, then for all feasible sequences $\{z_k\}$ and their limiting directions d:

 $\nabla f(\mathbf{x}^{\star})^{T}\mathbf{d} \geq 0$

Proof idea:

• If $\nabla f(\mathbf{x}^{\star})^T \mathbf{d} < 0$, then by Taylor expansion:

$$f(\mathbf{z}_k) = f(\mathbf{x}^*) + \|\mathbf{z}_k - \mathbf{x}^*\|\mathbf{d}^T \nabla f(\mathbf{x}^*) + o(\|\mathbf{z}_k - \mathbf{x}^*\|)$$

• For large k: $f(\mathbf{z}_k) < f(\mathbf{x}^*)$ contradicting optimality

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity

6. Derivation of First-Order Conditions

- Feasible Sequences
- Characterizing Limiting Directions
- Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Linearized Feasible Directions

Definition (Linearized Feasible Directions)

$$F_1 = \begin{cases} \alpha \mathbf{d} \mid \alpha > 0, & \mathbf{d}^T \nabla c_i(\mathbf{x}^*) = 0, \quad i \in \mathcal{E} \\ \mathbf{d}^T \nabla c_i(\mathbf{x}^*) \ge 0, & i \in \mathcal{A}(\mathbf{x}^*) \cap \mathcal{I} \end{cases}$$

Lemma (Characterization of Limiting Directions)

When LICQ holds:

1. Every limiting direction satisfies the conditions defining F_1

2. Every direction in F_1 is a limiting direction of some feasible sequence

Consequence: Under LICQ, optimality requires $\nabla f(\mathbf{x}^{\star})^T \mathbf{d} \ge 0$ for all $\mathbf{d} \in F_1$.

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity

6. Derivation of First-Order Conditions

- Feasible Sequences
- Characterizing Limiting Directions
- Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

From Geometry to Algebra

Lemma (Lagrange Multiplier Characterization)

There is no direction $\mathbf{d} \in F_1$ with $\mathbf{d}^T \nabla f(\mathbf{x}^*) < 0$ if and only if there exists $\boldsymbol{\lambda}$ such that:

$$abla f(\mathbf{x}^{\star}) = \sum_{i \in \mathcal{A}(\mathbf{x}^{\star})} \lambda_i
abla c_i(\mathbf{x}^{\star})$$

with $\lambda_i \geq 0$ for $i \in \mathcal{A}(\mathbf{x}^{\star}) \cap \mathcal{I}$.

Geometric intuition:

- Objective gradient must lie in cone generated by active constraint gradients
- Farkas' lemma: Either system has solution or alternative system has solution

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers

7. Second-Order Conditions

8. Second-Order Conditions and Projected Hessians

Need for Second-Order Analysis

First-order conditions are not sufficient!

Consider directions \boldsymbol{w} where first-order information is inconclusive:

$$\mathbf{w}^T \nabla f(\mathbf{x}^\star) = 0$$

Question: Does moving along w increase or decrease f?

Definition (Critical Cone) $F_2(\boldsymbol{\lambda}^{\star}) = \left\{ \boldsymbol{w} \in F_1 \mid \nabla c_i(\boldsymbol{x}^{\star})^T \boldsymbol{w} = 0, \text{ all } i \in \mathcal{A}(\boldsymbol{x}^{\star}) \cap \mathcal{I} \text{ with } \lambda_i^{\star} > 0 \right\}$

Key property: For $\mathbf{w} \in F_2(\boldsymbol{\lambda}^*)$: $\mathbf{w}^T \nabla f(\mathbf{x}^*) = 0$

Second-Order Necessary Conditions

Theorem (Second-Order Necessary Conditions)

If x^* is a local solution, LICQ holds, and λ^* satisfies KKT conditions, then:

$$\mathbf{w}^T
abla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^\star, oldsymbol{\lambda}^\star) \mathbf{w} \geq 0$$
 for all $\mathbf{w} \in F_2(oldsymbol{\lambda}^\star)$

Theorem (Second-Order Sufficient Conditions)

If \mathbf{x}^{\star} is feasible, KKT conditions hold, and:

$$\mathbf{w}^T
abla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \mathbf{\lambda}^{\star}) \mathbf{w} > 0$$
 for all $\mathbf{w} \in F_2(\mathbf{\lambda}^{\star}), \mathbf{w} \neq \mathbf{0}$

then \mathbf{x}^* is a strict local solution.

- 1. Introduction to Constrained Optimization
- 2. Local and Global Solutions
- 3. Smoothness
- 4. Examples
 - A Single Equality Constraint
 - A Single Inequality Constraint
 - Two Inequality Constraints
- 5. First-Order Optimality Conditions
 - Statement of First-Order Necessary Conditions
 - Sensitivity
- 6. Derivation of First-Order Conditions
 - Feasible Sequences
 - Characterizing Limiting Directions
 - Introducing Lagrange Multipliers
- 7. Second-Order Conditions
- 8. Second-Order Conditions and Projected Hessians

Projected Hessian Matrices

When strict complementarity holds: $F_2(\mathbf{\lambda}^*) = \text{Null}(\mathbf{A})$ where $\mathbf{A} = [\nabla c_i(\mathbf{x}^*)]_{i \in \mathcal{A}(\mathbf{x}^*)}^T$

Let Z be matrix whose columns span Null(A).

Projected Hessian Conditions

Necessary: $\mathbf{Z}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{Z} \succeq 0$ Sufficient: $\mathbf{Z}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{Z} \succ 0$

Computational approach: Use QR factorization of \mathbf{A}^{T} to find **Z**.

Summary: Characterizing Optimal Solutions

Complete Characterization

Point \mathbf{x}^{\star} is a local solution if:

- 1. First-order: KKT conditions hold
- 2. Second-order: $\mathbf{w}^T \nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^\star, \boldsymbol{\lambda}^\star) \mathbf{w} \ge 0$ for $\mathbf{w} \in F_2(\boldsymbol{\lambda}^\star)$

Practical verification:

- Check LICQ (linear independence of active constraint gradients)
- Solve KKT system for (x^\star, λ^\star)
- Verify projected Hessian conditions

Next: Algorithms to find points satisfying these conditions!

Constrained Optimization Problem

Exercise: 2D Optimization with Mixed Constraints

minimize
$$f(x, y) = (x - 2)^2 + (y - 2)^2$$
 (22)

subject to:
$$g(x, y) = x + y - 2 = 0$$
 (equality) (23)

$$h_1(x, y) = -x \le 0$$
 (i.e., $x \ge 0$) (24)

$$h_2(x, y) = -y \le 0$$
 (i.e., $y \ge 0$) (25)

Tasks:

- **1**. Write the Lagrangian function $L(x, y, \lambda, \mu_1, \mu_2)$
- 2. Implement gradient descent on the Lagrangian
- 3. Verify that $\mu_1^* = \mu_2^* = 0$ (inactive constraints)

Geometric Interpretation

Find the point closest to (2, 2) that lies on the line x + y = 2 and stays in the first