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1. Introduction to Constrained Optimization



Introduction to Constrained Optimization

Context and Motivation

® Unconstrained optimization: We could freely minimize f(x) over R”
® Real-world problems: Often have restrictions on variables

e Examples: Resource limits, physical constraints, design specifications

Goal: Characterize solutions when constraints are present, extending our knowledge
from unconstrained optimization.



Introduction to Constrained Optimization

Problem Formulation

General Constrained Optimization Problem

-
min f(x) subject to
ool (x) subj { ,

where:
e f: objective function
® ¢, i € &: equality constraints
® ¢;, i € I: inequality constraints
e Q={x|ci(x)=0,i €& ci(x)>0,i € I}: feasible set
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Local and Global Solutions

Impact of Constraints on Solutions

Constraints can:
e Simplify: Exclude many local minima = easier to find global minimum

e Complicate: Create infinitely many solutions

Example 1: min ||x||3 subject to ||x||3 > 1
® Unconstrained: unique solution x =0

® Constrained: any x with ||x||[2 = 1 solves the problem



Local and Global Solutions

Solution Definitions

Definition (Local solution)

x* is a local solution if x* € Q and there exists neighborhood N of x* such that

f(x) > f(x*) forall x e NN Q

Definition (Strict local solution)

x* is a strict local solution if x* € Q and there exists neighborhood N of x* such

that
f(x) > f(x*) for all x e NN Q, x # x*
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Smoothness and Constraint Representation

Key insight: Nonsmooth boundaries can often be described by smooth constraint
functions.

Diamond example: ||x||1 = |x1| + |x2| <1
® Nonsmooth: Single constraint with absolute values

® Smooth equivalent: Four linear constraints:

x1+x <1l xx—-x<1 -x+x<1 -—-x—x<1

[Visualization: Diamond constraint representation]



4. Examples
= A Single Equality Constraint
= A Single Inequality Constraint
= Two Inequality Constraints
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Examples

Example 1: Single Equality Constraint

Problem

minx; +x subjectto x?+x3—2=0

® Feasible set: Circle of radius v/2
® Solution: x* = (—1,—1)7 (by inspection)
¢ Key observation: At solution, V£ (x*) and V¢ (x*) are parallel

x2+x3 =2

Vf

Ve
6



Optimality Condition for Equality Constraints

Necessary Condition

At solution x*, there exists A} such that:

VF(x*) = ANV (x)

Intuition:
® For feasible descent direction d: Vci(x)"d = 0 (stay on constraint)
® For improvement: Vf(x)"d <0

® No such d exists when gradients are parallel
Lagrangian formulation:
L(x,A1) = f(x) — Aci(x)

Vi L(x*, A1) =0

7



Exercise 1

Problem Statement

Minimize: f(Xl, X2) = X1X2
Subject to: x? +x3 =8

Find the minimum value and the point(s) where it occurs.



Solution to Exercise 1 |

Step 1: Set up the Lagrangian
L(x1, X2, \) = x1x0 + A(xF + x5 — 8)

Step 2: First-order conditions

oL

oL

67)(2 = X1 + 2>\X2 =0 (2) (2)
oL

=B -8=0 (3) ©

oA



Solution to Exercise 1 Il

Step 3: Solve the system
From equations (1) and (2):

X = —2>\X1 (4)
X1 = —2>\X2 (5)

Substituting: x; = —2A(—2Xx1) = 4X%x;
Ifxg #0: 1=4X2 = X =+3

10



Solution to Exercise 1 IlI

Case 1: X = %

® Xp = —X1

® From constraint: x2 + x? = 8 = x; = 422

e (Critical points: (2\f —2\5) and (—2\@,2\@)
Case 2: \ = f%

® X0 =X

® From constraint: 2x? =8 = x; = +2

e Critical points: (2,2) and (-2, -2)

11



Examples

Solution to Exercise 1 IV

Step 4: Evaluate the objective function

At (2v/2, —2+/2) and (—2+/2,2+/2):
f=(2v2)(-2v2) = -8

At (2,2) and (-2, —2):
f=(2)(2)=4

Minimum value: —8

Occurs at: (2v/2, —2+/2) and (—2v/2,2v/2)

12
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Exercise 2

Problem Statement

Minimize: f(x1, x2, x3) = x2 + x5 + X32
Subject to:

gi: x1t+x2+x3=056 (6)
82 X1—X2:2 (7)

Find the minimum value and the point where it occurs.

13



Solution to Exercise 2 |
Step 1: Set up the Lagrangian

L:x12—|—x22+x32—|—)\1(x1—|—x2—|—X3—6)+)\2(x1—x2—2)

Step 2: First-order conditions

oL

B =T =0 () (8)
gxtzzxgmxzzo 2) (9)
(;9;:2X3+)\1:O (3) (10)
;}\le1+><2+><3—60 (4) (11)
O o i—x—2=0 (5) (12)

N2
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Solution to Exercise 2 Il

Step 3: Solve for variables in terms of multipliers
From the first-order conditions:

X3 = —% from (3) (13)
q = =N ‘; 22 from (1) (14)
xp = B from (2) (15)

2
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Solution to Exercise 2 Ill

Step 4: Use constraints to find multipliers
From constraint (5): x; — x2 = 2

7)\1+>\27 7}\17)\2 _ 5
2 2 N

A
—2 o2 =2

From constraint (4): x; +x2 + x3 =6

—>\1+>\2—)\1_>\2—&*6
2 2 2
3

———=6= X =—4
2 1
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Solution to Exercise 2 IV

Step 5: Find the solution
With Ay = —4 and A\ = —2:

X1 = _(74) ; (72) —3 (16)
Xo = _(74) ; (72) = 1l (17)
X3 = —(24) =2 (18)

Verification: 3+14+2=6and3—-1=2

17



Examples

Solution to Exercise 2 V

Minimum value: 32 +12+22 =14
Occurs at: (3,1,2)

18
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Examples

Example 2: Single Inequality Constraint

Problem

minx; +x subjectto 2—x% —x3 >0

® Feasible set: Disk of radius v/2 (circle + interior)
® Solution: x* = (—1, —1)7 (same as before)
e Key difference: Sign of Lagrange multiplier matters

Feasible

19



Two Cases for Inequality Constraints
Case I: Interior point (ci(x) > 0)

e Constraint not restrictive

® Necessary condition: V£(x) =0

® Lagrange multiplier: A\; =0

Case II: Boundary point (ci(x) = 0)
¢ Constraint is active
® Feasible descent direction d: Vci(x)"d > 0
¢ No such direction when: Vf(x) = A1 Vci(x) with A; >0

Complementarity Condition

)\1C1(X) =0

20
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Examples

Example 3: Two Inequality Constraints

Problem

minx; +xo subject to 2 —x? —x3 >0,

x2 >0

® Feasible set: Half-disk
* Solution: x* = (—+/2,0)"

e Both constraints active at solution

VC1

ek

X*

21




Multiple Constraints: KKT Conditions Preview

Lagrangian:
L(x,A) = f(x) — A1c1(x) — A2ca(x)

Optimality conditions:

ViL(X\A*) =0 (19)
Af>0 forallieZ (20)
Aci(x*) =0 foralli (21)

For Example 3: A* = (1/(2v2),1)"
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5. First-Order Optimality Conditions
= Statement of First-Order Necessary Conditions
= Sensitivity



5. First-Order Optimality Conditions

= Statement of First-Order Necessary Conditions



First-Order Optimality Conditions

Active Set and Constraint Qualification

Definition (Active Set)

Ax)=EU{ieT]|c(x)=0}

Definition (Linear Independence Constraint Qualification (LICQ))

At point x*, LICQ holds if the set of active constraint gradients {V¢;j(x*),i €
A(x*)} is linearly independent.

Purpose: Ensures constraint gradients are well-behaved and don't vanish
inappropriately.

23



Karush-Kuhn-Tucker (KKT) Conditions

Theorem (First-Order Necessary Conditions)

If x* is a local solution and LICQ holds at x*, then there exists A\* such that:

Vi L(x*, A*) =0 (Stationarity)
¢i(x*)=0, ie€é& (Equality feasibility)
¢i(x*) >0, ieZ (Inequality feasibility)

Af>0, ieT (Dual feasibility)
Nci(x*) =0, i€eEUT (Complementarity)

General Lagrangian




KKT Conditions: Interpretation

Stationarity: Vf(x*) =3 ;c 4 ATV Gi(x*)

® Objective gradient is linear combination of active constraint gradients
Complementarity: A7ci(x*) =0

® Either constraint is active (¢; = 0) or multiplier is zero (X\; = 0)

® Cannot have both ¢; >0 and \; >0
Dual feasibility: A* > 0 for inequality constraints

® Sign restriction crucial for inequality constraints

® No sign restriction for equality constraint multipliers

25



5. First-Order Optimality Conditions

= Sensitivity



First-Order Optimality Conditions

Economic Interpretation of Lagrange Multipliers

Sensitivity analysis: How does optimal value change when constraints are perturbed?

Consider perturbed constraint: c¢j(x) > —¢||V¢i(x*)||

df (x*(¢))

) — Ve

Interpretation:
® )\ measures sensitivity of optimal value to constraint /
® Large A¥ = constraint / is "tight" or "binding"

® \* =0 = constraint / has little impact on optimal value

26



Strongly vs. Weakly Active Constraints

Definition (Strongly Active Constraints)

Inequality constraint ¢; is strongly active if i € A(x*) and A* > 0.

Definition (Weakly Active Constraints)

Inequality constraint ¢; is weakly active if i € A(x*) and A\¥ = 0.

Economic interpretation:
e Strongly active: Relaxing constraint would improve objective

® Weakly active: Small constraint relaxation has no first-order effect

27



6. Derivation of First-Order Conditions
= Feasible Sequences
= Characterizing Limiting Directions
= |ntroducing Lagrange Multipliers



6. Derivation of First-Order Conditions
= Feasible Sequences



Derivation of First-Orde

Feasible Sequences Approach

Definition (Feasible Sequence)

Given feasible point x*, sequence {z,} is feasible if:
1. z) # x* for all k

2. limg_oo Zk = X*

3. zy is feasible for all k sufficiently large

Definition (Limiting Direction)

Vector d is a limiting direction if:
. zi — X*
im — =
k—oo ||zKk — x*||

for some feasible sequence {z}.




Derivation of First-Orde

First-Order Necessary Condition via Feasible Sequences

Theorem (Feasible Sequence Necessary Condition)

If x* is a local solution, then for all feasible sequences {zx} and their limiting
directions d:
VFf(x*)'d >0

Proof idea:
e If VF(x*)"d < 0, then by Taylor expansion:

f(zk) = F(x*) + |z — x*[|[d" VF(x*) + o( [z — x*]))

® For large k: f(zx) < f(x*) contradicting optimality

29



6. Derivation of First-Order Conditions

= Characterizing Limiting Directions



Derivation of First-Orde

Linearized Feasible Directions

Definition (Linearized Feasible Directions)

T Ax*) — 2
Flz{ad|a>0,dvc'(x)_0' ief }

d'Ve(x*) >0, ic Ax)NT

Lemma (Characterization of Limiting Directions)

When LICQ holds:

1. Every limiting direction satisfies the conditions defining Fy

2. Every direction in Fy is a limiting direction of some feasible sequence

Consequence: Under LICQ, optimality requires V£ (x*)"d > 0 for all d € F;.



6. Derivation of First-Order Conditions

= |ntroducing Lagrange Multipliers



__Introduction to Constrained Optimization Local and Global Solutions _Smoothness _Examples _First-Order Optimality Conditions _Derivation of First-Ords
From Geometry to Algebra

Lemma (Lagrange Multiplier Characterization)

There is no direction d € Fy with d" Vf(x*) < 0 if and only if there exists X such
that:

V)= Y AVe(x)

i€ A(x*)
with A\j > 0 for i € A(x*)NT.

Geometric intuition:
® Objective gradient must lie in cone generated by active constraint gradients

® Farkas' lemma: Either system has solution or alternative system has solution
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__Introduction to Constrained Optimization _Local and Global Solutions _Smoothness _Examples _First-Order Optimality Conditions Derivation of First-Ord
Need for Second-Order Analysis

First-order conditions are not sufficient!

Consider directions w where first-order information is inconclusive:
w/ VFf(x*) =0

Question: Does moving along w increase or decrease 7

Definition (Critical Cone)

Fo(X*) = {W € F1| Ve(x*)'w=0, all i € A(x") N T with X} > O}

Key property: For w € F(A*): w! V£(x*) =0

32



Second-Order Necessary Conditions

Theorem (Second-Order Necessary Conditions)

If x* is a local solution, LICQ holds, and X* satisfies KKT conditions, then:

W/ Vo L(x*, X )w >0 for all w € Fo(A¥)

Theorem (Second-Order Sufficient Conditions)
If x* is feasible, KKT conditions hold, and:

wTvxxﬁ(x*,)\*)w >0 forallwe F(A),w#0

then x* is a strict local solution.

33



8. Second-Order Conditions and Projected Hessians



Projected Hessian Matrices

When strict complementarity holds: F(A*) = Null(A)
where A = [Vc,-(x*)]l.TeA(x*)

Let Z be matrix whose columns span Null(A).

Projected Hessian Conditions

Necessary: Z"V,L(x*,A\*)Z = 0
Sufficient: ZTV, L(x*,A*)Z = 0

Computational approach: Use QR factorization of A’ to find Z.
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Summary: Characterizing Optimal Solutions

Complete Characterization

Point x* is a local solution if:
1. First-order: KKT conditions hold
2. Second-order: w’ V,, L(x*, A*)w > 0 for w € F(A*)

Practical verification:
® Check LICQ (linear independence of active constraint gradients)
® Solve KKT system for (x*, A*)

e \erify projected Hessian conditions

Next: Algorithms to find points satisfying these conditions!

35



Constrained Optimization Problem

Exercise: 2D Optimization with Mixed Constraints

minimize f(x,y) = (x —2)2 + (y — 2)? (22)
subject to:  g(x,y)=x+y—2=0 (equality) (23)
h(x,y)=—x<0 (ie, x>0) (24)

h(x,y) =~y <0 (ie,y>0) (25)

Tasks:
1. Write the Lagrangian function L(x, y, A, p1, n2)
2. Implement gradient descent on the Lagrangian

3. Verify that pu} = p% = 0 (inactive constraints)

Geometric Interpretation

Find the point closest to (2,2) that lies én the line x + y = 2 and stays in the first
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