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Unconstrained Optimization Context

Our Goal

Starting from an initial point x0, generate a sequence of iterates:

{xk}∞k=0

such that f (xk+1) < f (xk) until convergence.

Key Question: How do we move from xk to xk+1?

• Choose a direction pk
• Choose a step length ¸k
• Update: xk+1 = xk + ¸kpk
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Optimization on Level Sets

x∗

xk

¸kpk

xk+1

∇f (xk)

Level curves of f (x)
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Line Search Strategy

Line Search Approach

1. Choose a search direction pk

2. Find step length ¸k by approximately solving:

min
¸>0

f (xk + ¸pk)

3. Update: xk+1 = xk + ¸kpk

Key insight: Fix direction first, then find distance.

• Exact line search is expensive and unnecessary
• Use inexact line search with appropriate conditions
• Generate limited number of trial step lengths
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Trust Region Strategy

Trust Region Approach

1. Build local quadratic model mk(xk + p)

2. Choose maximum distance ∆k (trust region radius)
3. Solve: minpmk(xk + p) subject to ∥p∥ ≤ ∆k

4. If step is successful, accept; otherwise shrink ∆k

Key insight: Fix maximum distance first, then find best direction.

Quadratic model: mk(xk + p) = fk + pT∇fk + 1
2p

TBkp
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Visualization of Trust region

xk

Trust Region

∥p∥ ≤ ∆k

−∇f(xk)

Steepest descent

pk

Trust region step

x∗ f(x) = c1f(x) = c2f(x) = c3f(x) = c4

Trust Region Method

Legend:

Level sets

Trust region

Gradient direction

Trust region step

Trust region subproblem: minp mk(p) = fk + gT
k p+ 1

2
pTBkp

subject to ∥p∥ ≤ ∆k
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Line Search vs Trust Region

Aspect Line Search Trust Region
Order of choice Direction → Distance Distance → Direction
Search direction Fixed per iteration Changes when ∆k changes
Step acceptance Always accept May reject and retry

Computational cost Lower per iteration Higher per iteration
Robustness Good for well-scaled problems Better for ill-conditioned

Focus of this lecture: Line search methods
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Steepest Descent Direction

Theorem (Steepest Descent Direction)

The direction of steepest decrease is the solution to:

min
p

pT∇fk subject to ∥p∥ = 1

Solution: p = − ∇fk
∥∇fk∥

Proof sketch.

Using pT∇fk = ∥p∥∥∇fk∥ cos „:
• Minimize cos „ subject to ∥p∥ = 1

• Minimum occurs when cos „ = −1 (i.e., „ = ı)
• This gives p = −∇fk=∥∇fk∥
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General Descent Directions

Definition (Descent Direction)

A direction pk is a descent direction if:

pTk∇fk < 0

Equivalently, the angle „k between pk and −∇fk satisfies „k < ı=2.

Why Descent Directions Work

From Taylor expansion: f (xk + ›pk) = f (xk) + ›pTk∇fk + O(›2)
If pTk∇fk < 0, then f (xk + ›pk) < f (xk) for sufficiently small › > 0.
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The Step Length Tradeoff

Fundamental Challenge

We want to choose ¸k to minimize ffi(¸) = f (xk + ¸pk), but:
• Exact minimization is too expensive
• Need substantial reduction in f
• Cannot spend too much time choosing ¸k

Solution: Use inexact line search with appropriate termination conditions

• Sufficient decrease: Ensure adequate reduction in f
• Curvature condition: Prevent steps that are too short
• Bracketing + interpolation: Efficient implementation
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Sufficient Decrease Condition (Armijo)

Definition (Armijo Condition)

f (xk + ¸pk) ≤ f (xk) + c1¸∇f Tk pk

where c1 ∈ (0; 1) (typically c1 = 10−4).

• Ensures reduction proportional to step length and directional derivative
• Linear function l(¸) = f (xk) + c1¸∇f Tk pk
• Since c1 < 1, line l(¸) lies above ffi(¸) for small ¸
• Problem: Satisfied by all sufficiently small ¸
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Curvature Condition

Definition (Curvature Condition)

∇f (xk + ¸kpk)
Tpk ≥ c2∇f Tk pk

where c2 ∈ (c1; 1).

Intuition:
• Left side is ffi′(¸k), right side is c2ffi′(0)
• If slope ffi′(¸) is strongly negative ⇒ can reduce f more
• If slope is only slightly negative or positive ⇒ terminate

Typical values:
• c2 = 0:9 for Newton/quasi-Newton methods
• c2 = 0:1 for conjugate gradient methods
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Wolfe and Strong Wolfe Conditions

Wolfe Conditions

f (xk + ¸kpk) ≤ f (xk) + c1¸k∇f Tk pk (1)

∇f (xk + ¸kpk)
Tpk ≥ c2∇f Tk pk (2)

with 0 < c1 < c2 < 1.

Strong Wolfe Conditions

Replace second condition with:

|∇f (xk + ¸kpk)
Tpk | ≤ c2|∇f Tk pk |

Forces ¸k to lie near stationary points of ffi(¸).
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Wolfe Conditions Illustration

¸

ffi(¸)

ffi(0)

¸1 (satisfies)

¸2 (violates curvature)

Sufficient decrease line
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Existence of Wolfe Step Lengths

Theorem (Existence Theorem)

Suppose f : Rn → R is continuously differentiable, pk is a descent direction, and f
is bounded below along the ray {xk + ¸pk | ¸ > 0}.
Then for 0 < c1 < c2 < 1, there exist intervals of step lengths satisfying both the
Wolfe conditions and the strong Wolfe conditions.

Key implications:
• Wolfe conditions are not too restrictive
• Always possible to find acceptable step lengths
• Line search algorithms are well-defined
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Goldstein Conditions

Definition (Goldstein Conditions)

f (xk) + (1− c)¸k∇f Tk pk ≤ f (xk + ¸kpk) ≤ f (xk) + c¸k∇f Tk pk

with 0 < c < 1
2 .

• Right inequality: Sufficient decrease (same as Armijo)
• Left inequality: Controls step length from below
• Both conditions use same parameter c

Comparison with Wolfe:
• (Yes) Simpler (one parameter vs two)
• (No) May exclude minimizers of ffi(¸)
• (No) Not well-suited for quasi-Newton methods
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Goldstein Conditions Illustration

¸

ffi(¸)

ffi(0)

Acceptable ¸ Upper bound: c = 0:3

Lower bound: 1− c = 0:7
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Backtracking Line Search Algorithm

Algorithm Backtracking Line Search

Require: Choose ¯̧ > 0, ȷ ∈ (0; 1), c ∈ (0; 1)
1: Set ¸← ¯̧
2: while f (xk + ¸pk) > f (xk) + c¸∇f Tk pk do
3: ¸← ȷ¸
4: end while
5: return ¸k = ¸

Parameters:
• ¯̧ = 1 for Newton/quasi-Newton methods
• ȷ ∈ [0:1; 0:8] (contraction factor)
• c = 10−4 (sufficient decrease parameter)

Termination: Guaranteed in finite steps since ¸ becomes small enough.
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Properties of Backtracking

Key Properties

• Simplicity: Only uses sufficient decrease condition
• Efficiency: Cheap function evaluations
• Robustness: Always finds acceptable step
• Flexibility: Can use safeguarded interpolation for ȷ

Why it works:
• Either accepts initial step ¯̧

• Or finds step short enough for sufficient decrease
• But not too short: within factor ȷ of rejected step

Practical enhancement: Use polynomial interpolation to choose ȷ adaptively.
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Lipschitz Continuous Functions

Definition (Lipschitz Continuity)

A function f : Rn → R is Lipschitz
continuous on a set S if there exists a
constant L ≥ 0 such that:

∥f (x)− f (y)∥ ≤ L∥x− y∥

for all x; y ∈ S.
The smallest such constant L is called
the Lipschitz constant.

Key Properties:
• Lipschitz ⇒ uniformly continuous
• Bounds the "steepness" of f
• If f is differentiable: L = sup ∥∇f (x)∥

x

f (x)

(x; f (x))

(y; f (y))

slope +L

slope −L∥x− y∥

|f (x)− f (y)|

|f (x)− f (y)| ≤ L∥x− y∥

f (x)
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Zoutendijk’s Theorem

Theorem (Zoutendijk’s Theorem)

Consider iterations xk+1 = xk + ¸kpk where pk is a descent direction and ¸k
satisfies the Wolfe conditions.
Suppose f is bounded below, continuously differentiable in a neighborhood of the
level set L = {x : f (x) ≤ f (x0)}, and ∇f is Lipschitz continuous on L.
Then: X

k≥0

cos2 „k∥∇fk∥2 <∞

where cos „k =
−∇f Tk pk
∥∇fk∥∥pk∥ .
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Global Convergence Result

Corollary (Global Convergence)

If our method for choosing the search direction pk in the iteration ensures that the
angle „k between the negative gradient ∇fk and the search direction pk is bounded
away from 90◦, there exists a ‹ > 0 such that cos „k ≥ ‹ > 0 for all k .
Then:

lim
k→∞

∥∇fk∥ = 0

Applications:
• Steepest descent: cos „k = 1
• Newton: With proper modifications
• Quasi-Newton: With positive definite updates
• Conjugate gradient: With restarts

Note: "Global convergence" = convergence to stationary points, not global minima.
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Rate of Convergence

Convergence Rates Depend on Method

• Steepest descent: Linear convergence, can be very slow
• Newton’s method: Quadratic convergence near solution
• Quasi-Newton: Superlinear convergence
• Conjugate gradient: Finite termination (quadratic functions)

Key factors affecting rate:
• Condition number of the Hessian
• Choice of search direction
• Quality of line search
• Problem structure

Reference: Nocedal & Wright, Chapter 3, pages 47-51 for detailed analysis.
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Exercice

Exercise: Line Search on Himmelblau Function

Consider the Himmelblau function:

f (x; y) = (x2 + y − 11)2 + (x + y2 − 7)2

We want to find minima using a line search method with the following steps:
1. Implement a backtracking line search algorithm to find a step length ¸k that

satisfies the Wolfe conditions.
2. Use the steepest descent direction for the search direction pk .
3. Plot the convergence path on the level sets of f .
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