Numerical optimization : theory and applications

Ammar Mian Associate professor, LISTIC, Université Savoie Mont Blanc

Outline

- 1. Unconstrained Optimization Basics
- **2.** What is a Solution?
- 3. Taylor's Theorem and Optimality Conditions
- Optimization Algorithms Steepest Descent Method Newton Method
- **5.** Looking Ahead

What is a Solution?

Taylor's Theorem and Optimality Conditions

 Optimization Algorithms Steepest Descent Method Newton Method

5. Looking Ahead

Unconstrained Optimization - Basics $_{\odot \bullet}$

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Problem Formulation

Unconstrained Optimization Problem

We aim to solve:

 $\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x)$

where:

- $x \in \mathbb{R}^d$ is the optimization variable
- $f: \mathcal{D}_f \mapsto \mathbb{R}$ is the objective function
- No constraints on the admissible solutions

Goal: Characterize the nature of solutions under this setup.

2. What is a Solution?

Taylor's Theorem and Optimality Conditions

 Optimization Algorithms Steepest Descent Method Newton Method

5. Looking Ahead

What is a Solution?

aylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Local vs Global Minima

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Global Minimizer

Definition (Global minimizer)

A point x* is a **global minimizer** if

 $f(\mathbf{x}^{\star}) \leq f(\mathbf{x})$

where x ranges over all of \mathbb{R}^d (or at least over the domain of interest).

- Global minimizers can be difficult to find
- Our knowledge of *f* is usually only local
- Algorithms typically don't visit many points
- Cannot guarantee finding global minimum in general

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Local Minimizer

Definition (Local minimizer)

A point x^* is a **local minimizer** if

$$\exists r > 0, \quad f(\mathbf{x}^{\star}) \leq f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{B}(\mathbf{x}^{\star}, r)$$

Types of Local Minimizers

- Weak local minimizer: satisfies the definition above
- Strict local minimizer: when f(x*) < f(x) for all x ≠ x* in the neighborhood

2. What is a Solution?

3. Taylor's Theorem and Optimality Conditions

 Optimization Algorithms Steepest Descent Method Newton Method

5. Looking Ahead

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Taylor's Theorem

Theorem (Taylor's theorem)

Suppose $f : \mathbb{R}^d \mapsto \mathbb{R}$ is continuously differentiable and $p \in \mathbb{R}^d$. Then:

 $f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + t\mathbf{p})^{\mathsf{T}}\mathbf{p}$

for some $t \in [0, 1]$.

Moreover, if f is twice continuously differentiable:

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} \mathbf{p} + \frac{1}{2} \mathbf{p}^{T} \nabla^{2} f(\mathbf{x} + t\mathbf{p}) \mathbf{p}$$

for some $t \in [0, 1]$.

What is a Solution?

Taylor's Theorem and Optimality Conditions ○○●○○○○ Optimization Algorithms

Looking Ahead

Taylor's Approximation

Theorem (Taylor's approximation)

First order approximation:

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{p} + o(\|\mathbf{p}\|)$$

Second-order approximation:

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \nabla^2 f(\mathbf{x}) \mathbf{p} + o(\|\mathbf{p}\|^2)$$

where o(||p||) and $o(||p||^2)$ represent terms that grow slower than ||p|| and $||p||^2$ respectively as $||p|| \to 0$.

Unconstrained Optimization - Basics $_{\rm OO}$

What is a Solution?

Optimization Algorithms

Looking Ahead

First-Order Necessary Conditions

Theorem (First-order necessary conditions)

If x^* is a local minimizer, and f is continuously differentiable in a neighborhood of x^* , then

 $\nabla f(\mathbf{x}^{\star}) = 0$

Stationary Points

We call any point x such that $\nabla f(x) = 0$ a **stationary point**.

What is a Solution?

Taylor's Theorem and Optimality Conditions 0000000

Optimization Algorithms

Looking Ahead

Matrix Definiteness

Definitions

A matrix B is:

- **Positive definite** if $p^T Bp > 0$ for all $p \neq 0$
- Positive semidefinite if p^TBp ≥ 0 for all p

What is a Solution?

Taylor's Theorem and Optimality Conditions $\circ\circ\circ\circ\circ\bullet\circ$

Optimization Algorithms

Looking Ahead

Second-Order Necessary Conditions

Theorem (Second-order necessary conditions)

If x^* is a local minimizer of f and $\nabla^2 f$ is continuous in an open neighborhood of x^* , then:

- $\nabla f(\mathbf{x}^{\star}) = 0$
- $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite

Unconstrained Optimization - Basics $_{\rm OO}$

What is a Solution?

Taylor's Theorem and Optimality Conditions ○○○○○○● Optimization Algorithms

Looking Ahead

Second-Order Sufficient Conditions

Theorem (Second-Order Sufficient Conditions)

Suppose that $\nabla^2 f$ is continuous in an open neighborhood of x^* and that:

- $\nabla f(\mathbf{x}^{\star}) = 0$
- $\nabla^2 f(x^*)$ is positive definite

Then x^* is a strict local minimizer of f.

Note

These sufficient conditions are not necessary. Example: $f(x) = x^4$ at $x^* = 0$ is a strict local minimizer but the Hessian vanishes.

What is a Solution?

Taylor's Theorem and Optimality Conditions

 Optimization Algorithms Steepest Descent Method Newton Method

5. Looking Ahead

What is a Solution?

Taylor's Theorem and Optimality Conditions

Looking Ahead

The Need for Algorithms

Why do we need algorithms?

- We know that $\nabla f(\mathbf{x}^{\star}) = 0$ characterizes local minima
- But we don't always have the luxury to solve $\nabla f(x) = 0$ analytically
- Computing and checking Hessian conditions can be expensive

Algorithmic Approach

Design iterative algorithms that update ${\sf x}$ until convergence to a local minimizer:

- Gradient-based methods: use only gradient information
- Newton methods: use Hessian to accelerate convergence
- **Quasi-Newton methods:** approximate Hessian for balance

What is a Solution?

Taylor's Theorem and Optimality Conditions

4. Optimization Algorithms Steepest Descent Method Newton Method

5. Looking Ahead

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Steepest Descent Method

Steepest Descent Algorithm

Algorithm

Choose initial point x_0 and compute:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

where α_k are scalar values called **step-size** (or learning rate).

Intuition

- Like walking down a mountain in fog
- Feel the slope and step in steepest descent direction
- $-\nabla f(x_k)$ points in direction of steepest decrease
- Most aggressive local progress toward reducing function value

Taylor's Theorem and Optimality Conditions0000000

Optimization Algorithms

Looking Ahead

Steepest Descent Method

Steepest Descent - Successful Optimization

Successful Gradient Descent Trajectory

Figure: Successful optimization with steepest descent.

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Steepest Descent Method

Step Size Trade-offs

Step Size α_k Considerations

The choice of step size involves a fundamental trade-off:

- Too small: Painfully slow progress
- Too large: Might overshoot or start climbing uphill

Unconstrained Optimization - Basics $_{\rm OO}$

What is a Solution?

aylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Steepest Descent Method

Steepest Descent - Zigzag Problem

Figure: Zigzag behavior of steepest descent in narrow valleys.

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Steepest Descent Method

Why Steepest Descent Can Struggle

Zigzag Behavior

- Occurs in narrow valley-like functions (large condition number)
- Algorithm bounces between valley walls instead of walking down
- Steepest direction points toward walls, not down the valley
- Fundamentally myopic: only considers immediate local slope

Convergence Properties

- Linear convergence under reasonable conditions
- Error decreases by constant factor each iteration
- Can be frustratingly slow for poorly conditioned problems

What is a Solution?

Taylor's Theorem and Optimality Conditions

 Optimization Algorithms Steepest Descent Method Newton Method

5. Looking Ahead

Taylor's Theorem and Optimality Conditions

Looking Ahead

Newton Method

Newton Method - Motivation

Key Insight

- Steepest descent: navigating with only immediate slope
- Newton method: having detailed topographic map
- Incorporates curvature information (how slope changes)
- Uses second-order Taylor approximation

Strategy

Instead of minimizing *f* directly, minimize simpler quadratic approximation:

$$f(\mathbf{x}_k + \mathbf{p}) \approx f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \nabla^2 f(\mathbf{x}_k) \mathbf{p}$$

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Newton Method

Newton Method - Algorithm

Derivation

Setting gradient of quadratic approximation to zero:

$$abla f(\mathbf{x}_k) +
abla^2 f(\mathbf{x}_k) \mathbf{p} = \mathbf{0}$$

Solving for Newton step:

$$\mathsf{p}_k = -[\nabla^2 f(\mathsf{x}_k)]^{-1} \nabla f(\mathsf{x}_k)$$

Newton Iteration

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Taylor's Theorem and Optimality Conditions0000000

Optimization Algorithms

Looking Ahead

Newton Method

Newton Method - Optimization Step

Figure: Newton method optimization step.

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Newton Method

Newton Method - Geometric Insight

Hessian Information

- $\nabla^2 f(\mathbf{x}_k)$ encodes how gradient changes in different directions
- Recognizes elongated valley shapes
- Takes larger steps along valley floor, smaller steps perpendicular
- Eliminates zigzag behavior of steepest descent

Special Property

For quadratic functions: Newton method finds exact minimum in single step, regardless of conditioning!

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Newton Method

Newton Method - Convergence

Quadratic Convergence

Near solution satisfying second-order sufficient conditions:

- Number of correct digits roughly doubles each iteration
- If 1 correct digit next iteration gives 2 then 4 then 8
- Incredibly efficient for high-precision optimization
- Forms backbone of many sophisticated algorithms

Comparison

- Linear convergence: 1 digit � 3 iterations � 2 digits
- Quadratic convergence: 1 digit � 1 iteration � 2 digits

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Newton Method

Newton Method - Computational Cost

The Price of Power

- Must compute Hessian matrix: d(d + 1)/2 second derivatives
- Must solve linear system: $\nabla^2 f(\mathbf{x}_k)\mathbf{p}_k = -\nabla f(\mathbf{x}_k)$
- Requires $\sim d^3/3$ arithmetic operations per iteration
- Becomes prohibitive as dimension d grows

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Newton Method

Newton Method - Potential Failures

When Newton's Method Can Fail

- Hessian might not be positive definite away from minimum
- Quadratic model might have maximum or saddle point
- Newton step might point in wrong direction
- Poor quadratic approximation far from minimum
- Steps might increase function value

- **1.** Unconstrained Optimization Basics
- What is a Solution?
- Taylor's Theorem and Optimality Conditions
- Optimization Algorithms Steepest Descent Method Newton Method
- 5. Looking Ahead

What is a Solution?

Taylor's Theorem and Optimality Conditions

Optimization Algorithms

Looking Ahead

Bridge Between Methods

Motivating Questions

- Can we capture Newton's geometric insight without full computational burden?
- Can we ensure global reliability while achieving faster convergence?

Advanced Methods

- **Quasi-Newton methods (BFGS):** Approximate Hessian using gradients, superlinear convergence
- Trust region methods: Systematic progress guarantees
- Line search strategies: Reliable step size selection