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Problem Formulation

Unconstrained Optimization Problem

We aim to solve:

argminf (x)
x€Rd

where:
e x € RY is the optimization variable
e f:Dr— Risthe objective function
® No constraints on the admissible solutions

Goal: Characterize the nature of solutions under this setup.
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Local vs Global Minima

0.5

—0.5

—1.5

Logal neighberhood
\
Local minimum Global minimam
[ ] ] [ ]

| | | | | | | |
-14 -12 -1 -08 -0.6 —-04 02 0 02 04 06 0.8 1 1.2 14

"
Figure: Local and global minima can coexist in the same function.
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Global Minimizer

Definition (Global minimizer)

A point x* is a global minimizer if

F(x*) < f(x)

where x ranges over all of RY (or at least over the domain of interest).

Global minimizers can be difficult to find

Our knowledge of f is usually only local
® Algorithms typically don't visit many points

Cannot guarantee finding global minimum in general
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Local Minimizer

Definition (Local minimizer)

A point x* is a local minimizer if

Ir >0, f(x*)<f(x), VxeB(x*,r)

Types of Local Minimizers

e Weak local minimizer: satisfies the definition above

e Strict local minimizer: when f(x*) < f(x) for all x # x* in the
neighborhood
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Taylor's Theorem

Theorem (Taylor’s theorem)

Suppose f : RY — R is continuously differentiable and p € R9. Then:

f(x+p) = f(x) + VF(x+tp)p
forsome t € [0, 1].

Moreover, if f is twice continuously differentiable:
1
f(x+p) = F(x) + VF(x)"p+ 5p " V2F(x+ tp)p

forsome t € [0, 1].




Taylor's Theorem and Optimality Conditions
[e]e] lelele]e]

Taylor’s Approximation

Theorem (Taylor's approximation)

First order approximation:
f(x+p) = f(x) + VF(x)"p + oflpl])
Second-order approximation:
F(x+p) = f(x) + VF(x)"p+ %pTsz(X)p +o(|lpl?)

where o(||p||) and o(||p||?) represent terms that grow slower than ||p|| and ||p||?
respectively as ||p|| — O.
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First-Order Necessary Conditions

Theorem (First-order necessary conditions)

If x* is a local minimizer, and f is continuously differentiable in a neighborhood of
x*, then
Vf(x*) =0

Stationary Points

We call any point x such that Vf(x) = 0 a stationary point.
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Matrix Definiteness

Definitions

A matrix B is:
e Positive definite if p’Bp > 0 forall p #0
e Positive semidefinite if p” Bp > 0 for all p
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Second-Order Necessary Conditions

Theorem (Second-order necessary conditions)

If x* is a local minimizer of f and V?f is continuous in an open neighborhood of
x*, then:

e Vf(x*) =0
® V2f(x*) is positive semidefinite
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Second-Order Sufficient Conditions

Theorem (Second-Order Sufficient Conditions)

Suppose that V2f is continuous in an open neighborhood of x* and that:
* Vf(x*)=0
® V2f(x*) is positive definite

Then x* is a strict local minimizer of f.

These sufficient conditions are not necessary. Example: f(x) = x* at x* = 0 is
a strict local minimizer but the Hessian vanishes.
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The Need for Algorithms

Why do we need algorithms?

® We know that Vf(x*) = 0 characterizes local minima
® But we don't always have the luxury to solve V£(x) = 0 analytically
e Computing and checking Hessian conditions can be expensive

Algorithmic Approach

Design iterative algorithms that update x until convergence to a local mini-
mizer:

e Gradient-based methods: use only gradient information
* Newton methods: use Hessian to accelerate convergence
® Quasi-Newton methods: approximate Hessian for balance




4. Optimization Algorithms
Steepest Descent Method



Optimization Algorithms
[o] lelelele)

Steepest Descent Method

Steepest Descent Algorithm

Algorithm

Choose initial point xo and compute:

Xk+1 = Xk — aka(xk)

where oy are scalar values called step-size (or learning rate).

e |ike walking down a mountain in fog

® Feel the slope and step in steepest descent direction

® —Vf(xk) points in direction of steepest decrease

® Most aggressive local progress toward reducing function value
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Steepest Descent Method

Steepest Descent - Successful Optimization

Successful Gradient Descent Trajectory
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Figure: Successful optimization with steepest descent.
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Steepest Descent Method

Step Size Trade-offs

Step Size o Considerations

The choice of step size involves a fundamental trade-off:
® Too small: Painfully slow progress
® Too large: Might overshoot or start climbing uphill
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Steepest Descent Method

Steepest Descent - Zigzag Problem

Zigzag Pattern in Narrow Valley
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Figure: Zigzag behavior of steepest descent in narrow valleys.
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Steepest Descent Method

Why Steepest Descent Can Struggle

Zigzag Behavior

e Occurs in narrow valley-like functions (large condition number)

Algorithm bounces between valley walls instead of walking down

Steepest direction points toward walls, not down the valley
® Fundamentally myopic: only considers immediate local slope

Convergence Properties

® Linear convergence under reasonable conditions
e Error decreases by constant factor each iteration
e Can be frustratingly slow for poorly conditioned problems
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Newton Method

Newton Method - Motivation

e Steepest descent: navigating with only immediate slope

® Newton method: having detailed topographic map
® Incorporates curvature information (how slope changes)
® Uses second-order Taylor approximation

Strategy

Instead of minimizing f directly, minimize simpler quadratic approximation:

1
f(xk +p) ~ F(x) + VF(xe)Tp + 5pTv2f(xk)p
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Newton Method - Algorithm

Derivation

Setting gradient of quadratic approximation to zero:
VF(xe) + V2f(x)p=0
Solving for Newton step:

Pk = — [V (xi)] ™ VF(xk)

Newton Iteration

Xie1 = Xk — [V2F(xk)] 7TV F (xk)
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Newton Method - Optimization Step
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Figure: Newton method optimization step.
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Newton Method - Geometric Insight

Hessian Information

V2f(xx) encodes how gradient changes in different directions

® Recognizes elongated valley shapes

Takes larger steps along valley floor, smaller steps perpendicular

Eliminates zigzag behavior of steepest descent

Special Property

For quadratic functions: Newton method finds exact minimum in single step,
regardless of conditioning!
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Newton Method - Convergence

Quadratic Convergence

Near solution satisfying second-order sufficient conditions:

® Number of correct digits roughly doubles each iteration
e |f1correct digit € next iteration gives 2 @ then 4 € then 8
¢ Incredibly efficient for high-precision optimization

Forms backbone of many sophisticated algorithms

Comparison

® Linear convergence: 1 digit € 3 iterations € 2 digits
® Quadratic convergence: 1 digit € 1 iteration € 2 digits
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Newton Method - Computational Cost

The Price of Power

® Must compute Hessian matrix: d(d + 1)/2 second derivatives
® Must solve linear system: V2f(xx)px = —V£(xk)
® Requires ~ d3/3 arithmetic operations per iteration

Becomes prohibitive as dimension d grows
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Newton Method - Potential Failures

When Newton’s Method Can Fail

® Hessian might not be positive definite away from minimum
e Quadratic model might have maximum or saddle point

° Newton step might point in wrong direction

® Poor quadratic approximation far from minimum

e Steps might increase function value
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Bridge Between Methods

Motivating Questions

e Can we capture Newton's geometric insight without full computational
burden?

e Can we ensure global reliability while achieving faster convergence?

Advanced Methods

® Quasi-Newton methods (BFGS): Approximate Hessian using gradients,
superlinear convergence

® Trust region methods: Systematic progress guarantees
® Line search strategies: Reliable step size selection
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