
Numerical optimization : theory and applications

Ammar MianAssociate professor, LISTIC, Université Savoie Mont Blanc



Outline

1. Unconstrained Optimization - Basics
2. What is a Solution?
3. Taylor’s Theorem and Optimality Conditions
4. Optimization AlgorithmsSteepest Descent MethodNewton Method
5. Looking Ahead



1. Unconstrained Optimization - Basics

2. What is a Solution?

3. Taylor’s Theorem and Optimality Conditions

4. Optimization AlgorithmsSteepest Descent MethodNewton Method

5. Looking Ahead



Unconstrained Optimization - Basics What is a Solution? Taylor’s Theorem and Optimality Conditions Optimization Algorithms Looking Ahead

Problem Formulation

Unconstrained Optimization Problem

We aim to solve:
argmin

x∈Rd

f (x)

where:
• x ∈ Rd is the optimization variable
• f : Df 7→ R is the objective function
• No constraints on the admissible solutions

Goal: Characterize the nature of solutions under this setup.
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Local vs Global Minima
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Figure: Local and global minima can coexist in the same function.
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Global Minimizer

Definition (Global minimizer)

A point x⋆ is a global minimizer if
f (x⋆) ≤ f (x)

where x ranges over all of Rd (or at least over the domain of interest).

• Global minimizers can be difficult to find
• Our knowledge of f is usually only local
• Algorithms typically don’t visit many points
• Cannot guarantee finding global minimum in general
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Local Minimizer

Definition (Local minimizer)

A point x⋆ is a local minimizer if
∃r > 0, f (x⋆) ≤ f (x), ∀x ∈ B(x⋆, r)

Types of Local Minimizers

• Weak local minimizer: satisfies the definition above
• Strict local minimizer: when f (x⋆) < f (x) for all x ̸= x⋆ in theneighborhood
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Taylor’s Theorem

Theorem (Taylor’s theorem)

Suppose f : Rd 7→ R is continuously differentiable and p ∈ Rd . Then:

f (x + p) = f (x) +∇f (x + tp)Tp

for some t ∈ [0, 1].

Moreover, if f is twice continuously differentiable:

f (x + p) = f (x) +∇f (x)Tp +
1
2
pT∇2f (x + tp)p

for some t ∈ [0, 1].
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Taylor’s Approximation

Theorem (Taylor’s approximation)

First order approximation:

f (x + p) = f (x) +∇f (x)Tp + o(∥p∥)

Second-order approximation:

f (x + p) = f (x) +∇f (x)Tp +
1
2
pT∇2f (x)p + o(∥p∥2)

where o(∥p∥) and o(∥p∥2) represent terms that grow slower than ∥p∥ and ∥p∥2

respectively as ∥p∥ → 0.
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First-Order Necessary Conditions

Theorem (First-order necessary conditions)

If x⋆ is a local minimizer, and f is continuously differentiable in a neighborhood of
x⋆, then

∇f (x⋆) = 0

Stationary Points

We call any point x such that∇f (x) = 0 a stationary point.
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Matrix Definiteness

Definitions
A matrix B is:

• Positive definite if pTBp > 0 for all p ̸= 0
• Positive semidefinite if pTBp ≥ 0 for all p

8
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Second-Order Necessary Conditions

Theorem (Second-order necessary conditions)

If x⋆ is a local minimizer of f and ∇2f is continuous in an open neighborhood of
x⋆, then:

• ∇f (x⋆) = 0
• ∇2f (x⋆) is positive semidefinite

9
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Second-Order Sufficient Conditions

Theorem (Second-Order Sufficient Conditions)

Suppose that∇2f is continuous in an open neighborhood of x⋆ and that:
• ∇f (x⋆) = 0
• ∇2f (x⋆) is positive definite

Then x⋆ is a strict local minimizer of f .

Note

These sufficient conditions are not necessary. Example: f (x) = x4 at x⋆ = 0 isa strict local minimizer but the Hessian vanishes.

10



1. Unconstrained Optimization - Basics

2. What is a Solution?

3. Taylor’s Theorem and Optimality Conditions

4. Optimization AlgorithmsSteepest Descent MethodNewton Method

5. Looking Ahead



Unconstrained Optimization - Basics What is a Solution? Taylor’s Theorem and Optimality Conditions Optimization Algorithms Looking Ahead

The Need for Algorithms

Why do we need algorithms?

• We know that∇f (x⋆) = 0 characterizes local minima
• But we don’t always have the luxury to solve∇f (x) = 0 analytically
• Computing and checking Hessian conditions can be expensive

Algorithmic Approach

Design iterative algorithms that update x until convergence to a local mini-mizer:
• Gradient-based methods: use only gradient information
• Newton methods: use Hessian to accelerate convergence
• Quasi-Newton methods: approximate Hessian for balance
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Steepest Descent Method

Steepest Descent Algorithm

Algorithm

Choose initial point x0 and compute:
xk+1 = xk − αk∇f (xk)

where αk are scalar values called step-size (or learning rate).

Intuition
• Like walking down a mountain in fog
• Feel the slope and step in steepest descent direction
• −∇f (xk) points in direction of steepest decrease
• Most aggressive local progress toward reducing function value

12
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Steepest Descent Method

Steepest Descent - Successful Optimization
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Figure: Successful optimization with steepest descent.
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Steepest Descent Method

Step Size Trade-offs

Step Size αk Considerations

The choice of step size involves a fundamental trade-off:
• Too small: Painfully slow progress
• Too large: Might overshoot or start climbing uphill

14



Unconstrained Optimization - Basics What is a Solution? Taylor’s Theorem and Optimality Conditions Optimization Algorithms Looking Ahead

Steepest Descent Method

Steepest Descent - Zigzag Problem
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Figure: Zigzag behavior of steepest descent in narrow valleys.
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Steepest Descent Method

Why Steepest Descent Can Struggle

Zigzag Behavior

• Occurs in narrow valley-like functions (large condition number)
• Algorithm bounces between valley walls instead of walking down
• Steepest direction points toward walls, not down the valley
• Fundamentally myopic: only considers immediate local slope

Convergence Properties

• Linear convergence under reasonable conditions
• Error decreases by constant factor each iteration
• Can be frustratingly slow for poorly conditioned problems

16
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Newton Method

Newton Method - Motivation

Key Insight

• Steepest descent: navigating with only immediate slope
• Newton method: having detailed topographic map
• Incorporates curvature information (how slope changes)
• Uses second-order Taylor approximation

Strategy

Instead of minimizing f directly, minimize simpler quadratic approximation:
f (xk + p) ≈ f (xk) +∇f (xk)Tp +

1
2
pT∇2f (xk)p
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Newton Method

Newton Method - Algorithm

Derivation
Setting gradient of quadratic approximation to zero:

∇f (xk) +∇2f (xk)p = 0

Solving for Newton step:
pk = −[∇2f (xk)]−1∇f (xk)

Newton Iteration

xk+1 = xk − [∇2f (xk)]−1∇f (xk)

18
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Newton Method

Newton Method - Optimization Step
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Figure: Newton method optimization step.
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Newton Method

Newton Method - Geometric Insight

Hessian Information
• ∇2f (xk) encodes how gradient changes in different directions
• Recognizes elongated valley shapes
• Takes larger steps along valley floor, smaller steps perpendicular
• Eliminates zigzag behavior of steepest descent

Special Property

For quadratic functions: Newton method finds exact minimum in single step,regardless of conditioning!
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Newton Method

Newton Method - Convergence

Quadratic Convergence

Near solution satisfying second-order sufficient conditions:
• Number of correct digits roughly doubles each iteration
• If 1 correct digit� next iteration gives 2� then 4� then 8
• Incredibly efficient for high-precision optimization
• Forms backbone of many sophisticated algorithms

Comparison

• Linear convergence: 1 digit� 3 iterations� 2 digits
• Quadratic convergence: 1 digit� 1 iteration� 2 digits
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Newton Method

Newton Method - Computational Cost

The Price of Power
• Must compute Hessian matrix: d(d + 1)/2 second derivatives
• Must solve linear system: ∇2f (xk)pk = −∇f (xk)
• Requires ∼ d3/3 arithmetic operations per iteration
• Becomes prohibitive as dimension d grows
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Newton Method

Newton Method - Potential Failures

When Newton’s Method Can Fail
• Hessian might not be positive definite away from minimum
• Quadratic model might have maximum or saddle point
• Newton step might point in wrong direction
• Poor quadratic approximation far from minimum
• Steps might increase function value
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Bridge Between Methods

Motivating Questions

• Can we capture Newton’s geometric insight without full computationalburden?
• Can we ensure global reliability while achieving faster convergence?

Advanced Methods
• Quasi-Newton methods (BFGS): Approximate Hessian using gradients,superlinear convergence
• Trust region methods: Systematic progress guarantees
• Line search strategies: Reliable step size selection
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