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Introduction Linear Algebra Differentiation

Online ressources

The syllabus, course monograph and slides are available at:

1

https://ammarmian.github.io/numerical_optimization/


Introduction Linear Algebra Differentiation

Book ressources

Main book

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999

Additional in convex optimization

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004

For reminders

Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications
in statistics and econometrics. John Wiley & Sons, 2019
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Introduction Linear Algebra Differentiation

Part I - Fundamentals

Oranisation of first week

Session Duration Content Date Room
CM1 1.5h Introduction, Linear algebra and Differentiation reminders, and exercices 2 June 2025 10am B-120
CM2 1.5h Steepest descent algorithm, Newton method and convexity 2 June 2025 1.15pm B-120
TD1 1.5h Application to linear regression 2 June 2025 3pm C-213
CM3 1.5h Linesearch algorithms and their convergence 3 June 2025 10am B-120
CM4 1.5h Constrained optimization : linear programming and lagrangian methods 3 June 2025 1.15pm B-120
TD2 1.5h Implementation of Linesearch methods 3 June 2025 3pm C-213

Then on 5 June 2025 at 1pm, a project on Implementation of inverse problems for
image processing, by Yassine Mhiri.
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Introduction Linear Algebra Differentiation

Numerical optimization

What is this course about ?

Numerical optimization

Numerical optimization is the computational process of finding the best solution
to a mathematical problem when analytical (exact) methods are impractical or
impossible.

What problem ?
• Variables : x1, : : : , xd organised as x ∈ Rd

• Objective function: f : X ⊂ Rd 7→ R
• Constraints : S = {x ∈ X : h1;:::;p(x) = 0; g1;:::;q(x) ≥ 0}
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Introduction Linear Algebra Differentiation

Practical examples (1/3)

10 mm 5 mm

Cable factory

A factory produces copper cables of 5mm and 10mm diameter, on which the profit is
respectively 2 and 7 euros per meter. The copper available to the factory allows for the
production of 20 km of 5mm diameter cable per week. The production of 10mm cable
requires 4 times more copper than that of 5mm cable. For demand reasons, the weekly
production of 5mm cable must not exceed 15 km, and for logistical reasons, the production
of 10mm cable must not represent more than 40% of the total production.

→ How to know what is the most profitable setup ?
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Introduction Linear Algebra Differentiation

Practical exmaples (2/3)

Image denoising

→ How to model the wanted signal and then find the best one among all possible
signals ?
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Introduction Linear Algebra Differentiation

Practical examples (3/3)

Portfolio optimization

An investor has $1M to allocate between 3 assets: stocks (expected return 8%, risk 15%),
bonds (expected return 4%, risk 5%), and real estate (expected return 6%, risk 10%). The
correlations between assets are: stocks-bonds = 0.2, stocks-real estate = 0.3, bonds-real
estate = 0.1. The investor wants to maximize expected return while keeping portfolio risk
below 8%.

Mathematical formulation:

max
w

3X
i=1

wi—i s:t
√
wTΣw ≤ 0:08;

3X
i=1

wi = 1; wi ≥ 0; i = 1; 2; 3 (1)

where wi = weight in asset i , —i = expected return, Σ = covariance matrix
→ How to find the optimal balance between risk and return?
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Introduction Linear Algebra Differentiation

Notations

Matrix vectors, and scalars

• Scalars ∈ R are lowercase letters: x; y ; z or greek letters: ¸; ˛; ‚
• Vectors ∈ Rd are lowercase bold letters: x; y; z or greek letters: „

• Matrices ∈ Rm;n are uppercase bold letters: X;Y;Z

> We don’t consider data in Cd but it could be treated with equivalence Cd ≡ R2d .

We also consider functions:
• f : Rd → R is a function from Rd to R, e.g. f (x) = xTAx+ bTx+ c

• g : Rm;n → R is a function from Rm;n to R, e.g. g(X) = ∥X∥2F
• h : Rd → Rp is a function from Rd to Rp, e.g. h(x) = [x2

1 ; x
2
2 ; : : : ; x

2
d ]

T

• l : Rm;n → Rq is a function from Rm;n to Rq, e.g. l(X) =

0BBB@
X2

11

X2
12

...
X2

mn

1CCCA
8



Introduction Linear Algebra Differentiation

Vectors

Usual operations

• Sum: x+ y =

0BBB@
x1 + y1
x2 + y2

...
xd + yd

1CCCA
• Scalar product: xTy = x1y1 + x2y2 + · · ·+ xdyd

• p-norm: ∥x∥p =
“Pd

i=1 |xi |p
”1=p

, with ∥x∥2 =
√
xTx

9



Introduction Linear Algebra Differentiation

Vector spaces

Span and Subspace

For a set of vectors {v1; : : : ; vk}: span({v1; : : : ; vk}) =
{c1v1 + c2v2 + : : :+ ckvk : ci ∈ R}.
A subspace is a subset of a vector space that is closed under addition and scalar
multiplication.

Linear independence

A set of vectors {v1; : : : ; vk} is said to be linearly independent if the only solution
to the equation c1v1 + c2v2 + : : :+ ckvk = 0 is c1 = c2 = : : : = ck = 0.

Basis: A set of vectors {b1; : : : ;bk} is a basis of a vector space if they are linearly
independent and span the space.
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Introduction Linear Algebra Differentiation

Matrices

Usual operations

• Sum for X;Y ∈ Rm;n: X+ Y = Z ∈ Rm;n with Zi j = Xi j + Yi j for
i = 1; : : : ; m and j = 1; : : : ; n

• Hadamard product for X;Y ∈ Rm;n: X ◦ Y = Z ∈ Rm;n with Zi j = Xi jYi j for
i = 1; : : : ; m and j = 1; : : : ; n

• Matrix multiplication for A ∈ Rm;n, B ∈ Rn;p: AB = C ∈ Rm;p with
Ci j =

Pn
k=1 AikBkj , for i = 1; : : : ; m and j = 1; : : : ; p

• Frobenius norm: ∥X∥F =
rP

i

P
j

|Xi j |2, with ∥X∥2F = Tr (X ◦ X)

Matrix/vector multiplication: for A ∈ Rm;n and x ∈ Rn, we have Ax = y ∈ Rm with
yi =

Pn
j=1 Ai jxj , for i = 1; : : : ; m.

11



Introduction Linear Algebra Differentiation

Matrices as linear applications

Given a basis in a vector space V, a matrix A ∈ Rm;n can be seen as a linear application
A : V → Rm such that for any vector x ∈ V, we have:
x =

Pn
i=1 xiei ⇒

A(x) = Ax =
nX
i=1

xiA(ei ) =
nX
i=1

xiai ;

where ai is the i-th column of A.

12
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Matrix properties (1/2)

Transpose

The transpose of a matrix A ∈ Rm;n is denoted AT ∈ Rn;m and is defined as
(AT)i j = Aj i .

Symmetric matrices

A matrix A ∈ Rn;n is symmetric if A = AT.

Positive definite matrices

A symmetric matrix A ∈ Rn;n is positive definite if for all non-zero vectors x ∈ Rn,
we have xTAx > 0.

13



Introduction Linear Algebra Differentiation

Matrix properties (2/2)

Inverse

The inverse of a square matrix A ∈ Rn;n is denoted A−1 and is defined such that
AA−1 = In, where In is the identity matrix of size n.

Determinant

The determinant of a square matrix A ∈ Rn;n is denoted det(A) or |A| and is
a scalar value that provides information about the matrix, such as whether it is
invertible.

Trace

The trace of a square matrix A ∈ Rn;n is denoted Tr(A) and is defined as the sum
of the diagonal elements: Tr(A) =

Pn
i=1 Ai i .

14
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Exercices

TODO

15
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Introduction Linear Algebra Differentiation

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

For a square matrix A ∈ Rn;n, a scalar – is an eigenvalue and a non-zero vector
v ∈ Rn is an eigenvector if they satisfy the equation:

Av = –v:

Computing eigenvalues and eigenvectors: The eigenvalues of a matrix A are the
roots of the characteristic polynomial det(A− –In) = 0, where In is the identity matrix
of size n.

Spectral theorem

If A is symmetric, then it has n real eigenvalues and n orthogonal eigenvectors (i.e
if ui and uj are eigenvectors of A, then uTi uj = 0 for i ̸= j).

16



Introduction Linear Algebra Differentiation

Eigenvalue decomposition

Eigenvalue decomposition

If A is a symmetric matrix, it can be decomposed as:

A = UΛUT;

where U is an orthogonal matrix whose columns are the eigenvectors of A, and Λ
is a diagonal matrix whose diagonal elements are the eigenvalues of A.

Properties

• The eigenvalues of A are the diagonal elements of Λ.
• The columns of U form an orthonormal basis for Rn.
• The eigenvalue decomposition is unique up to the order of the eigenvalues

and eigenvectors.

17
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Singular Value Decomposition (SVD)

Singular Value Decomposition

Any matrix X ∈ Rm;n can be decomposed as X = UΣVT;

• U ∈ Rm;m is an orthogonal matrix whose columns are the left singular vectors
of X.

• Σ ∈ Rm;n is a diagonal matrix with non-negative entries (the singular values).
• V ∈ Rn;n is an orthogonal matrix whose columns are the right singular

vectors of X.

Properties

• The singular values are the square roots of the eigenvalues of XTX or XXT.
• The SVD is unique up to the order of the singular values and the signs of the singular

vectors.

18
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Introduction Linear Algebra Differentiation

Matrix Conditioning: Definition

Definition: Condition Number

For a nonsingular matrix A ∈ Rn×n and matrix norm ∥ · ∥, the condition number
is:

»(A) = ∥A∥ · ∥A−1∥

Basic Properties

• »(A) ≥ 1 for any nonsingular A
• »(¸A) = »(A) for any ¸ ̸= 0

• »(A) = ∞ if A is singular

19



Introduction Linear Algebra Differentiation

Well vs Ill-Conditioned Matrices

Classification
• Well-conditioned: »(A) is small (close to 1)
• Ill-conditioned: »(A) is large (≫ 1)
• Singular: »(A) = ∞ (no inverse exists)

Relation to Linear Systems

For Ax = b, if we perturb b → b+∆b, then x → x+∆x where: ∥∆x∥
∥x∥ ≤ »(A)∥∆b∥∥b∥

Interpretation: »(A) amplifies relative errors by factor »(A).

Numerical Stability

• Rule of thumb: Lose ≈ log10(»(A)) decimal digits
• If »(A) ≈ 10k , expect (d − k) correct digits in d-digit precision
• Example: »(A) = 106 in double precision ⇒ lose 6 digits

20



Introduction Linear Algebra Differentiation

Relationship to Eigenvalues

Symmetric Matrices

For symmetric A with eigenvalues –1 ≥ –2 ≥ · · · ≥ –n:

»2(A) =
|–1|
|–n|

=
|–max|
|–min|

Geometric meaning: Ratio of largest to smallest stretching factors.

Geometric Interpretation

Matrix A transforms unit sphere {x : ∥x∥2 = 1} into ellipsoid:
• Semi-axes have lengths ff1; ff2; : : : ; ffn (singular values)
• »2(A) =

ffmax
ffmin

= aspect ratio of ellipsoid
• High condition number ⇔ very elongated ellipsoid

21
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Introduction Linear Algebra Differentiation

Exercices

Factorization

Let A ∈ Rn×n such that A3 − 4A2 +5A− 2In = 0, where In is the identity matrix
of size n. Show that A is invertible and find its inverse A−1 as a function of A.
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Introduction Linear Algebra Differentiation

Classification of Quadratic Forms

Problem

For the quadratic form q(x) = xTAx , consider the following matrices:

A1 =

„
2 1
1 3

«
; A2 =

„
1 2
2 1

«
; A3 =

„
−1 0
0 −2

«

Tasks

1. Classify each quadratic form as:
• Positive definite
• Negative definite
• Indefinite

2. Find the minimum/maximum values of q(x) subject to ∥x∥2 = 1 (if they
exist)

3. State the geometric interpretation of each quadratic form

Hint

Use eigenvalues to classify: A is positive definite iff all eigenvalues > 0, negative
definite iff all eigenvalues < 0, indefinite iff eigenvalues have mixed signs.
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Introduction Linear Algebra Differentiation

Matrix Inversion Formulas

Problem

Consider the matrices:

A =

„
2 1
3 2

«
; B =

„
1 k
k 1

«

Tasks

1. Find the inverse of A using the formula:

A−1 =
1

det(A)
adj(A)

where adj(A) is the adjugate matrix.
2. Verify your result by computing AA−1 = I.
3. For which values of k is matrix B invertible?
4. Find B−1 in terms of k (when it exists).

Recall

For a 2× 2 matrix
„
a b
c d

«
, the adjugate is

„
d −b
−c a

«
.

24
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Orthogonal Projections

Problem

Consider the vectors:

v1 =

0@1
1
0

1A ; v2 =

0@1
0
1

1A
Tasks

1. Find the projection matrix P that projects onto the subspace
W = span{v1; v2}.

2. Verify that P satisfies the projection properties:
• P 2 = P (idempotent)
• P T = P (symmetric)

3. What is the matrix I − P? What subspace does it project onto?

4. Find the projection of the vector b =

0@2
1
3

1A onto W .

Formula

For subspace spanned by columns of V : P = V (V T V )−1V T

25



Introduction Linear Algebra Differentiation

Exercise: Condition Number Analysis

Problem

Consider the symmetric matrix: A› =
„
4 2
2 1 + ›

«
; where › > 0 is a small param-

eter. This matrix arises as the Hessian of a quadratic function.

Part A: Eigenvalue Analysis

1. Find the eigenvalues –1 and –2 of
A› in terms of ›.

2. Compute the 2-norm condition
number »2(A›) = –max

–min
.

3. What happens to »2(A›) as
›→ 0+?

Part B: Numerical Computation

For › ∈ {1; 0:1; 0:01; 0:001}:
1. Compute A−1

› explicitly.
2. Calculate »2(A›) using

»2(A) = ∥A∥2∥A−1∥2.
3. Verify your results match the

eigenvalue computation from
Part A.
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Introduction Linear Algebra Differentiation

Derivative of a function

−2 −1 1 2

−6

−4

−2

2 x0
x

f (x)

Definition

The derivative of a function f :
R → R at a point x0 is defined
as:

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h

→ The derivative represents the slope
of the tangent line to the curve at the
point (x0; f (x0)).

Usually computed thanks to product and chain rules:
• Product rule: (uv)′ = u′v + uv ′

• Chain rule: (f (g(x)))′ = f ′(g(x))g ′(x)
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Introduction Linear Algebra Differentiation

Limits and Continuity

Open disk

An open disk of radius › > 0 centered at a point x0 ∈ Rd is defined as:

B(x0; ›) = {x ∈ Rd : ∥x− x0∥2 < ›}

Limit

The limit of a function f : Rd → R at a point x0 is defined as:

lim
x→x0

f (x) = L

if ∀› > 0; ∃‹ > 0 such that if ∥x− x0∥2 < ‹, then |f (x)− L| < ›.

A function is continuous at a point x0 if limx→x0 f (x) = f (x0).

28



Introduction Linear Algebra Differentiation

Directional derivative

Directional derivative

The directional derivative of a function f : Rd → R at a point x0 in the direction
of a vector v ∈ Rd is defined as:

Df (x0)[v] = lim
h→0

f (x0 + hv)− f (x0)

h

If ∥v∥2 = 1, then Df (x0)[v] represents the rate of change of f in the direction of v at
the point x0.
Note : We use alternatively the notation ∇vf (x0) for the directional derivative.

29



Introduction Linear Algebra Differentiation

Illustration of directional derivative

x0

y0

v

x

y

z
slope in v direction

Df(x0, y0)[v]

(x0, y0)
Direction vector: v = (0.6, 0.8)
|v| = 1 (unit vector)
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Introduction Linear Algebra Differentiation

Gradient

Gradient

The gradient of a function f : Rd → R at a point x0 is defined as the vector of all
directional derivatives in the standard basis directions:

∇f (x0) = (Df (x0)[e1]; Df (x0)e1; : : : ; Df (x0)e1)
T

where {e1; : : : ; ed} is the standard basis of Rd .

→ the direction of the steepest ascent of the function f at the point x0.

Relationship with directional derivative

For any vector v ∈ Rd , the directional derivative can be expressed as:

Df (x0)[v] = ∇f (x0)Tv

31



Introduction Linear Algebra Differentiation

Graident and partial derivatives

Partial derivatives

The partial derivative of a function f : Rd → R with respect to the i-th variable is
defined as:

@f

@xi
(x0) = lim

h→0

f (x0 + hei )− f (x0)

h

where ei is the i-th standard basis vector.

The gradient can be expressed in terms of partial derivatives as:

∇f (x0) =
„
@f

@x1
(x0);

@f

@x2
(x0); : : : ;

@f

@xd
(x0)

«T

→ The gradient is a vector containing all the partial derivatives of the function at the
point x0.
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Gradient properties and practical computation

Derivative of a prodct

Let g : Rd → R and h : Rd → R be two functions. Then the gradient of their
product f (x) = g(x)h(x) can be computed using the product rule:

∇f (x) = g(x)∇h(x) + h(x)∇g(x)

Derivative of a composition

Two cases:
• f = h ◦ g with: h : R 7→ R and g : Rd 7→ R. The gradient of f can be

computed using the chain rule: ∇f (x) = h′(g(x))∇g(x), where h′ is the
derivative of h.

• f = h ◦ g with: h : Rd 7→ R and g : Rd ′ 7→ Rd . (We look at that later)

33



Introduction Linear Algebra Differentiation

Hessian matrix

Hessian matrix

The Hessian matrix of a function f : Rd → R at a point x0 is defined as the square
matrix of second-order partial derivatives:

H(x0) =

0BBBBB@
@2f
@x21

(x0)
@2f

@x1@x2
(x0) · · · @2f

@x1@xd
(x0)

@2f
@x2@x1

(x0)
@2f
@x22

(x0) · · · @2f
@x2@xd

(x0)

...
...

. . .
...

@2f
@xd@x1

(x0)
@2f

@xd@x2
(x0) · · · @2f

@x2d
(x0)

1CCCCCA
→ The Hessian matrix provides information about the curvature of the function f at
the point x0.
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Introduction Linear Algebra Differentiation

Exercices

Exercices
• Compute the gradient and Hessian matrix of the function
f (x; y) = x2 + 3xy + y2 at the point (1; 2).

• Using chain-rule compute gradient of f (x) = (
Pd

i x
2
i )

(1=2).
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Introduction Linear Algebra Differentiation

Hessian matrix properties

Properties of the Hessian matrix

• The Hessian is symmetric: H(x0) = H(x0)T.
• If f is twice continuously differentiable, then the mixed partial derivatives are

equal: @2f
@xi@xj

= @2f
@xj@xi

.

• The eigenvalues of the Hessian provide information about the local curvature
of the function:

• If all eigenvalues are positive, f is locally convex at x0.
• If all eigenvalues are negative, f is locally concave at x0.
• If some eigenvalues are positive and others are negative, f has a saddle point

at x0.
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Exercice

Rosenbrock function

The Rosenbrock function is defined as:

f (x; y) = (a− x)2 + b(y − x2)2

where a and b are constants (commonly a = 1 and b = 100).
• Compute the gradient ∇f (x; y). And find stationary point(s).
• Compute the Hessian matrix H(x; y). Analyse local curvature at the

stationary point(s).

37



1. Introduction
Course organization
The setup

2. Linear Algebra
Vectors and matrices
Matrix decompositions
Conditioning
Exercices

3. Differentiation
Monovariate reminders
Extension to Multivariate setup: f : Rd → R
Multivariate case: f : Rd → Rp

Matrix functions: f : Rm;n → R
Matrix functions: f : Rm;n → Rp;q



Introduction Linear Algebra Differentiation

Multivariate functions

Multivariate function

A function f : Rd → Rp maps a vector x ∈ Rd to a vector y ∈ Rp. We can write:

f (x) =

0BBB@
f1(x)
f2(x)

...
fp(x)

1CCCA
The function f is said to be vector-valued, and each component fi : Rd → R is a scalar
function.
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Gradient and Jacobian

Gradient

The gradient of a function f : Rd → R is defined as:

∇f (x) =
„
@f

@x1
;
@f

@x2
; : : : ;

@f

@xd

«T

∈ Rd

Jacobian matrix

The Jacobian matrix of a function f : Rd → Rp is defined as:

Jf (x) =

0BBBB@
@f1
@x1

@f1
@x2

· · · @f1
@xd

@f2
@x1

@f2
@x2

· · · @f2
@xd

...
...

. . .
...

@fp
@x1

@fp
@x2

· · · @fp
@xd

1CCCCA ∈ Rp×d

→ The Jacobian matrix generalizes the concept of gradient to vector-valued functions.
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Jacobian and directional derivative

Directional derivative

The directional derivative of a function f : Rd → Rp in the direction of a vector
v ∈ Rd is defined as:

Df (x)[v] = Jf (x)v =

0BBB@
∇f1(x)T v
∇f2(x)T v

...
∇fp(x)T v

1CCCA ∈ Rp

The directional derivative gives the rate of change of the function f for all components
in the direction of v at the point x.
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Chain rule for composition of functions

General chain rule

If f : Rd → Rp and g : Rm → Rd , then the composition h = f ◦ g : Rm → Rp is
defined as:

h(y) = f (g(y))

The Jacobian of h can be computed using the chain rule:

Jh(y) = Jf (g(y))Jg (y)

where Jh(y) ∈ Rp×m, Jf (g(y)) ∈ Rp×d , and Jg (y) ∈ Rd×m.
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Chain rule: Special cases

Case 1: f : Rd → R and g : Rm → Rd

For h = f ◦ g : Rm → R, we have:

∇h(y) = Jg (y)
T∇f (g(y))

where Jg (y) ∈ Rd×m and ∇f (g(y)) ∈ Rd .

Case 2: f : R → R and g : Rm → R

For h = f ◦ g : Rm → R, we have:

∇h(y) = f ′(g(y))∇g(y)

where f ′(g(y)) ∈ R is a scalar and ∇g(y) ∈ Rm.

42



Introduction Linear Algebra Differentiation

Exercise 1: Basic Chain Rule

Problem

Given:
• f (x) = xT x where f : R2 → R

• g(y) =

„
y1 + y2
y1 − y2

«
where g : R2 → R2

• h = f ◦ g

Task: Find ∇h(y) using the chain rule.

Chain Rule Formula (Case 1)

For h = f ◦ g where f : Rn → R and g : Rm → Rn:

∇h(y) = Jg (y)
T∇f (g(y))
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Exercise 1: Solution

Step 1: Compute ∇f (x)

Using matrix calculus: f (x) = xT x

∇f (x) = 2x

Step 2: Compute Jacobian Jg (y)

g(y) =

„
y1 + y2
y1 − y2

«
⇒ Jg (y) =

„
1 1
1 −1

«

Step 3: Apply chain rule

∇h(y) = Jg (y)
T∇f (g(y)) =

„
1 1
1 −1

«
· 2g(y)

= 2

„
1 1
1 −1

«„
y1 + y2
y1 − y2

«
= 2

„
2y1
2y2

«
=

„
4y1
4y2

«
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Exercise 1: Verification

Direct computation

h(y) = f (g(y)) = (y1 + y2)
2 + (y1 − y2)

2

= y21 + 2y1y2 + y22 + y21 − 2y1y2 + y22 = 2y21 + 2y22

Therefore:

∇h(y) =
„
4y1
4y2

«
X
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Exercise 2: General Quadratic Forms

Problem (General Case)

Given:
• f (x) = xTAx+ bT x where f : Rn → R
• A ∈ Rn×n symmetric, b ∈ Rn

• g(y) = Cy where g : Rm → Rn

• C ∈ Rn×m

• h = f ◦ g

Task: Find ∇h(y) using matrix calculus and the chain rule.

Matrix Calculus Rules

• ∇(xTAx) = 2Ax (when A symmetric)
• ∇(bT x) = b

• For linear g(y) = Cy: Jg (y) = C
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Exercise 2: General Solution

Step 1: Compute ∇f (x)

Using matrix calculus rules:
∇f (x) = 2Ax+ b

Step 2: Compute Jacobian Jg (y)

Since g(y) = Cy (linear transformation):

Jg (y) = C ∈ Rn×m

Step 3: Apply chain rule

∇h(y) = Jg (y)
T∇f (g(y))

= CT [2A(Cy) + b]

= 2CTACy + CTb
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Exercise 2: Numerical Example

Specific case: n = 3; m = 2

• A =

0@2 0 1
0 1 0
1 0 3

1A, b =

0@ 1
−1
2

1A
• C =

0@1 2
0 1
1 0

1A
Computing the required matrices:

CTAC =

„
1 0 1
2 1 0

«0@2 0 1
0 1 0
1 0 3

1A0@1 2
0 1
1 0

1A =

„
7 6
6 9

«

CTb =

„
1 0 1
2 1 0

«0@ 1
−1
2

1A =

„
3
1

«
Therefore:

∇h(y) = 2

„
7 6
6 9

«
y +

„
3
1

«
=

„
14y1 + 12y2 + 3
12y1 + 18y2 + 1

«48
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Key Takeaways

Advantages of Matrix Calculus Approach

• Scalability: Works for arbitrary dimensions without modification
• Efficiency: No component-wise partial derivatives needed
• Clarity: Clean matrix operations instead of summations
• Generality: Same formulas apply regardless of problem size

General Chain Rule Pattern

For compositions h = f ◦ g :
1. Identify the structure of f and g
2. Use appropriate matrix calculus rules for ∇f and Jg

3. Apply: ∇h(y) = Jg (y)T∇f (g(y))
4. Verify using direct computation when possible
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Fréchet derivative – Definition

Fréchet differentiability

A function f : Rm×n → Rp×q is differentiable at X if there exists a linear mapping
Df (X) : Rm×n → Rp×q such that

lim
∥V∥F→0

∥f (X+ V)− f (X)−Df (X)[V]∥F
∥V∥F

= 0

Df (X)[‰] = f (X+ ‰)− f (X) + o(∥‰∥)

Gateaux derivative (alternative characterization)

If f is Fréchet differentiable at X, then for any V:

Df (X)[V] =
d

dt

˛̨̨̨
t=0

f (X+ tV) = lim
t→0

f (X+ tV)− f (X)

t

Note: If d
dt

˛̨
t=0

f (X+ tV) is not linear in V, then f is not Fréchet differentiable.50
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What it means to derive a matrix function?

Matrix function

A matrix function f : Rm;n → R maps a matrix X ∈ Rm;n to a scalar value. For
example, f (X) = ∥X∥2F .

Directional derivative

The directional derivative of f at X in direction V is:

Df (X)[V] = lim
h→0

f (X+ hV)− f (X)

h

where V ∈ Rm;n is a perturbation matrix.

Since Df (X) is linear, it can be represented using the gradient matrix.
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Gradient in the matrix to scalar case

Gradient definition

For f : Rm;n → R, the gradient ∇f (X) ∈ Rm;n satisfies:

Df (X)[V] = Tr(∇f (X)TV)

where Tr(·) denotes the trace of a matrix.

Link to partial derivatives

The gradient can be computed using partial derivatives:

∇f (X) =

0BBB@
@f
@X11

@f
@X12

· · · @f
@X1n

@f
@X21

@f
@X22

· · · @f
@X2n

...
...

. . .
...

@f
@Xm1

@f
@Xm2

· · · @f
@Xmn

1CCCA
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Examples: Matrix to scalar functions
Example 1: f (X) = ∥X∥2F = Tr(XTX)
Using Gateaux derivative:

Df (X)[V] =
d

dt

˛̨̨̨
t=0

Tr((X+ tV)T(X+ tV))

=
d

dt

˛̨̨̨
t=0

[Tr(XTX) + 2tTr(XTV) + t2Tr(VTV)]

= 2Tr(XTV)

Therefore: ∇f (X) = 2X

Example 2: f (X) = log det(X) (for invertible X)

Df (X)[V] =
d

dt

˛̨̨̨
t=0

log det(X+ tV) = Tr(X−1V)

Therefore: ∇f (X) = X−T
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Matrix to matrix functions

Matrix-valued function

A function f : Rm;n → Rp;q maps a matrix X ∈ Rm;n to a matrix Y ∈ Rp;q.

Directional derivative

The directional derivative Df (X)[V] is a linear mapping from Rm;n to Rp;q:

Df (X)[V] = lim
t→0

f (X+ tV)− f (X)

t

Vectorization representation

Since Df (X) is linear, there exists a matrix MX ∈ Rpq×mn such that:

vec(Df (X)[V]) = MXvec(V)

where vec(·) stacks matrix columns into a vector.
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Vectorization identities

Key identities for matrix calculus

• vec(ABC) = (CT ⊗ A)vec(B)

• Tr(AB) = vec(A)Tvec(B)

• Tr(ATB) = vec(A)Tvec(B)

where ⊗ denotes the Kronecker product.

These identities allow us to:
• Convert matrix operations to vector operations
• Find the matrix MX in the vectorization representation
• Compute derivatives efficiently
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Examples: Matrix to matrix functions
Example 1: f (X) = X2

Using Gateaux derivative:

Df (X)[V] =
d

dt

˛̨̨̨
t=0

(X+ tV)2

=
d

dt

˛̨̨̨
t=0

[X2 + t(XV + VX) + t2V2]

= XV + VX

Therefore: Df (X)[V] = XV + VX

Example 2: f (X) = X−1 (for invertible X)
From the identity XX−1 = I and product rule:

VX−1 + XDf (X)[V] = 0

Therefore: Df (X)[V] = −X−1VX−1
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Properties of matrix function derivatives

Linearity

For f = ¸g + ˛h:

Df (X)[V] = ¸Dg(X)[V] + ˛ Dh(X)[V]

Product rule

For f (X) = g(X) · h(X) (matrix multiplication):

Df (X)[V] = Dg(X)[V] · h(X) + g(X) ·Dh(X)[V]

Chain rule

For f (X) = g(h(X)):

Df (X)[V] = Dg(h(X))[Dh(X)[V]]
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Chain rule example

Example: f (X) = (X1=2)2 = X
Let g(Y) = Y2 and h(X) = X1=2, so f (X) = g(h(X)).
We know:

• Dg(Y)[W] = YW +WY

• Df (X)[V] = V (since f (X) = X)
Using the chain rule:

Df (X)[V] = Dg(h(X))[Dh(X)[V]]

V = X1=2Dh(X)[V] +Dh(X)[V]X1=2

This gives us a Sylvester equation for Dh(X)[V]:

X1=2Dh(X)[V] +Dh(X)[V]X1=2 = V

58



Introduction Linear Algebra Differentiation

Summary: Matrix function differentiation

Key concepts

• Fréchet derivative: Captures linear approximation of matrix functions
• Matrix-to-scalar: Gradient ∇f (X) with Df (X)[V] = Tr(∇f (X)TV)
• Matrix-to-matrix: Linear operator Df (X) with vectorization representation
• Vectorization: Converts matrix operations to linear algebra on vectors

Applications

• Optimization on matrix manifolds
• Machine learning (gradient descent for matrix parameters)
• Sensitivity analysis
• Perturbation theory
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